Updated world module (now voronoi roads work

This commit is contained in:
Segey Lapin
2021-10-13 16:33:36 +03:00
parent d0b1daa6e9
commit e35d566eb8
14 changed files with 1533 additions and 246 deletions

View File

@@ -4,37 +4,26 @@
void DensityMap::_get_property_list(List<PropertyInfo> *p_list) const
{
p_list->push_back(PropertyInfo(Variant::INT, "world/grid_size"));
p_list->push_back(PropertyInfo(Variant::INT, "world/clusters/count"));
if (grid_size == 0 || num_clusters == 0)
return;
p_list->push_back(PropertyInfo(Variant::INT, "world/size/x"));
p_list->push_back(PropertyInfo(Variant::INT, "world/size/y"));
p_list->push_back(PropertyInfo(Variant::INT, "world/size/z"));
if (world_x_size * world_y_size * world_z_size == 0U)
return;
p_list->push_back(PropertyInfo(Variant::INT, "world/clusters/seed"));
// p_list->push_back(PropertyInfo(Variant::INT, "world/grid_size"));
p_list->push_back(PropertyInfo(Variant::OBJECT, "noise", PROPERTY_HINT_RESOURCE_TYPE, "OpenSimplexNoise"));
p_list->push_back(PropertyInfo(Variant::INT, "rnd_seed"));
p_list->push_back(PropertyInfo(Variant::OBJECT, "curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"));
p_list->push_back(PropertyInfo(Variant::OBJECT, "height_map", PROPERTY_HINT_RESOURCE_TYPE, "WorldHeightMap"));
}
bool DensityMap::_get(const StringName &p_name, Variant &r_ret) const
{
if (p_name == "world/clusters/count") {
r_ret = num_clusters;
if (p_name == "noise") {
r_ret = noise;
return true;
} else if (p_name == "world/clusters/seed") {
} else if (p_name == "rnd_seed") {
r_ret = seed;
return true;
} else if (p_name == "world/grid_size") {
r_ret = grid_size;
} else if (p_name == "curve") {
r_ret = curve;
return true;
} else if (p_name == "world/size/x") {
r_ret = world_x_size;
return true;
} else if (p_name == "world/size/y") {
r_ret = world_y_size;
return true;
} else if (p_name == "world/size/z") {
r_ret = world_z_size;
} else if (p_name == "height_map") {
r_ret = height_map;
return true;
}
@@ -44,189 +33,66 @@ bool DensityMap::_get(const StringName &p_name, Variant &r_ret) const
bool DensityMap::_set(const StringName &p_name, const Variant &p_value)
{
bool update = false;
if (p_name == "world/clusters/count") {
num_clusters = p_value;
if (p_name == "noise") {
noise = p_value;
update = true;
} else if (p_name == "world/clusters/seed") {
} else if (p_name == "rnd_seed") {
seed = p_value;
update = true;
} else if (p_name == "world/grid_size") {
grid_size = p_value;
} else if (p_name == "curve") {
curve = p_value;
update = true;
} else if (p_name == "world/size/x") {
world_x_size = p_value;
update = true;
} else if (p_name == "world/size/y") {
world_y_size = p_value;
update = true;
} else if (p_name == "world/size/z") {
world_z_size = p_value;
} else if (p_name == "height_map") {
curve = p_value;
update = true;
}
if (update) {
update_clusters();
update_all();
_change_notify();
}
return update;
}
void DensityMap::populate_grid(List<struct area> &list)
void DensityMap::update_all()
{
}
void DensityMap::update_clusters()
{
int i;
clusters.clear();
regions.clear();
counties.clear();
cities.clear();
districts.clear();
circle_grid.clear();
if (num_clusters < 1)
if (!curve.ptr() || !rnd.ptr() || !noise.ptr() || !height_map.ptr())
return;
rnd->set_seed(seed);
world_center.x = world_x_size / 2;
world_center.y = world_y_size / 2;
world_center.z = world_z_size / 2;
if (world_x_size * world_y_size * world_z_size == 0)
return;
split_area(NULL, num_clusters, clusters);
for (i = 0; i < clusters.size(); i++) {
split_area(&clusters[i], num_regions, regions);
}
for (i = 0; i < regions.size(); i++) {
split_area(&regions[i], num_counties, counties);
}
for (i = 0; i < counties.size(); i++) {
split_area(&counties[i], num_cities, cities);
}
for (i = 0; i < cities.size(); i++) {
split_area(&cities[i], num_districts, districts);
}
WorldMapData *wmd = WorldMapData::get_singleton();
wmd->clear();
wmd->set_world_size(world_x_size, world_z_size);
#if 0
for (i = 0; i < clusters.size(); i++) {
wmd->add_circle(clusters[i].pos.x, clusters[i].pos.y, clusters[i].radius);
printf("cluster: %d x: %d y: %d radius: %f\n", i, clusters[i].pos.x, clusters[i].pos.y, clusters[i].radius);
}
#endif
for (i = 0; i < districts.size(); i++) {
wmd->add_circle(districts[i].pos.x, districts[i].pos.y, districts[i].radius);
printf("districts: %d x: %d y: %d radius: %f\n", i, districts[i].pos.x, districts[i].pos.y, districts[i].radius);
}
wmd->save_debug_image();
printf("num_clusters: %d - %d\n", (int)num_clusters, (int)clusters.size());
printf("num_regions: %d - %d\n", (int)num_regions, (int)regions.size());
printf("num_counties: %d - %d\n", (int)num_counties, (int)counties.size());
printf("num_cities: %d - %d\n", (int)num_cities, (int)cities.size());
printf("num_districts: %d - %d\n", (int)num_districts, (int)districts.size());
}
void DensityMap::split_area(struct area *area, int num_split, List<struct area> &list)
void DensityMap::_bind_methods()
{
ClassDB::bind_method(D_METHOD("get_population_density", "x", "y"), &DensityMap::get_population_density);
}
float DensityMap::get_population_density(float x, float y)
{
Vector2i pstart;
struct area astart;
float mrad;
int count = 500 * num_split;
int orig_size = (int)list.size();
if (area) {
pstart.x = area->pos.x;
pstart.y = area->pos.y;
#if 0
while (true) {
float angle = rnd->randf() * M_PI * 2.0f;
float off = rnd->randf() * area->radius;
float tx = cosf(angle) * off;
float ty = cosf(angle) * off;
int px = area->pos.x + (int)tx;
int py = area->pos.y + (int)ty;
if (px < 0 || px >= (int)world_x_size)
continue;
if (px < 0 || px >= (int)world_x_size)
continue;
pstart.x = px;
pstart.y = py;
break;
}
float n = (noise->get_noise_2d(x, y) + 1.0f) * 0.5f;
float d = curve->interpolate_baked(n);
#endif
mrad = area->radius / (float)num_split;
} else {
pstart.x = rnd->randi() % world_x_size;
pstart.y = rnd->randi() % world_z_size;
mrad = sqrtf((float)world_x_size * (float)world_z_size) / (float)num_split;
mrad *= 0.9f;
pstart.x -= (int)mrad + 1;
pstart.y -= (int)mrad + 1;
}
astart.pos = pstart;
astart.radius = mrad;
astart.parent = area;
list.push_back(astart);
Vector2i cur(pstart.x, pstart.y);
while ((int)list.size() - orig_size < num_split && count-- > 0) {
float angle = rnd->randf() * M_PI * 2.0f;
float offt_x = cosf(angle) * mrad;
float offt_y = sinf(angle) * mrad;
int ox = (int)(cur.x + offt_x);
int oy = (int)(cur.y + offt_y);
if (ox < 0 || ox >= (int)world_x_size)
ox = (int)(cur.x - offt_x);
if (oy < 0 || ox >= (int)world_y_size)
oy = (int)(cur.y - offt_y);
if (area && !area->has_point(Vector2i(ox, oy)))
continue;
if (ox < 0 || ox >= (int)world_x_size)
continue;
if (oy < 0 || oy >= (int)world_z_size)
continue;
// printf("sample: %d %d %f\n", ox, oy, mrad);
const List<struct area>::Element *e = list.front();
bool good = true;
while (e) {
struct area a = e->get();
int oxd = ox - a.pos.x;
int oyd = oy - a.pos.y;
int r = oxd * oxd + oyd * oyd;
if (r < mrad * mrad) {
good = false;
break;
}
e = e->next();
}
if (good) {
struct area anext;
anext.pos.x = ox;
anext.pos.y = oy;
anext.radius = mrad;
anext.parent = area;
list.push_back(anext);
printf("result: %d %d %f\n", anext.pos.x, anext.pos.y, anext.radius);
}
}
if (count <= 0)
printf("list count %d\n", (int)list.size());
float h = height_map->get_surface_height(x, y);
if (h < 0.0f || h > max_height)
return 0.0f;
float s = height_map->get_base_steepness(x, y);
if (s > 0.3f)
return 0.0f;
float d = 0.0f;
/* Still use curve for it? */
if (h < max_height * 0.3f)
d = 1.0f;
else
d = max_height * 0.3f / h;
return d * s;
}
DensityMap::DensityMap()
{
rnd.instance();
rnd->randomize();
seed = rnd->get_seed();
world_x_size = 400000;
world_y_size = 1000;
world_z_size = 400000;
grid_size = 100;
num_clusters = 5;
num_regions = 15;
num_counties = 30;
num_cities = 5;
num_districts = 5;
max_height = 300.0f;
}
DensityMap::~DensityMap()
{
}

View File

@@ -2,7 +2,9 @@
#define DENSITY_MAP_H
#include <core/resource.h>
#include <core/math/random_number_generator.h>
#include <modules/opensimplex/open_simplex_noise.h>
#include <modules/voxel/util/math/vector3i.h>
#include "world_height_map.h"
class DensityMap: public Resource {
GDCLASS(DensityMap, Resource);
@@ -10,47 +12,19 @@ public:
DensityMap();
~DensityMap();
protected:
Ref<WorldHeightMap> height_map;
Ref<RandomNumberGenerator> rnd;
struct area {
Vector2i pos;
float radius;
struct area *parent;
inline bool has_point(const Vector2i &pt)
{
int tox = pos.x - pt.x;
int toy = pos.y - pt.y;
int tdst = tox * tox + toy * toy;
int rsq = (int)(radius * radius);
return tdst < rsq;
}
};
List<struct area> clusters;
List<struct area> regions;
List<struct area> counties;
List<struct area> cities;
List<struct area> districts;
int num_clusters;
int num_regions;
int num_counties;
int num_cities;
int num_districts;
HashMap<Vector2i, Vector<struct area> > circle_grid;
void split_area(struct area *area, int num_split, List<struct area> &list);
void populate_grid(List<struct area> &list);
void set_num_clusters(int num);
int get_num_clusters() const;
/* 100m grid */
int grid_size;
uint32_t world_x_size;
uint32_t world_y_size;
uint32_t world_z_size;
Vector3i world_center;
int seed;
Ref<OpenSimplexNoise> noise;
Ref<Curve> curve;
float max_height;
bool _set(const StringName &p_name, const Variant &p_value);
bool _get(const StringName &p_name, Variant &r_ret) const;
void _get_property_list(List<PropertyInfo> *p_list) const;
static void _bind_methods();
public:
void update_clusters();
void update_all();
float get_population_density(float x, float y);
private:
int seed;
};
#endif

View File

@@ -8,6 +8,9 @@
#include "characters.h"
#include "smart_object.h"
#include "road_map.h"
#include "world_height_map.h"
#include "road_grid.h"
#include "roads.h"
void register_world_types()
{
@@ -15,7 +18,10 @@ void register_world_types()
Engine::get_singleton()->add_singleton(Engine::Singleton("RoadMap", RoadMap::get_singleton()));
WorldMapData::create_singleton();
Engine::get_singleton()->add_singleton(Engine::Singleton("WorldMapData", WorldMapData::get_singleton()));
RoadsData::create_singleton();
Engine::get_singleton()->add_singleton(Engine::Singleton("RoadsData", RoadsData::get_singleton()));
ClassDB::register_class<WorldGenerator>();
ClassDB::register_class<WorldHeightMap>();
ClassDB::register_class<DensityMap>();
ClassDB::register_class<CompoundTransvoxel>();
ClassDB::register_class<CompoundTransvoxelInspector>();
@@ -23,6 +29,8 @@ void register_world_types()
ClassDB::register_class<SmartObject>();
ClassDB::register_class<SmartObjectManager>();
ClassDB::register_class<SmartObjectGroup>();
ClassDB::register_virtual_class<RoadGrid>();
ClassDB::register_class<Roads>();
#if TOOLS_ENABLED
EditorPlugins::add_by_type<CompoundTransvoxelEditorPlugin>();
#endif

331
modules/world/road_grid.cpp Normal file
View File

@@ -0,0 +1,331 @@
#include <cassert>
#include <cmath>
#include <core/math/geometry.h>
#include <core/resource.h>
#include <scene/2d/canvas_item.h>
#include <modules/voronoi/voronoi.h>
#include <modules/opensimplex/open_simplex_noise.h>
#include "road_grid.h"
RoadGrid::RoadGrid()
{
grid_width = 16;
grid_height = 16;
class_sizes[SITE_EMPTY] = 10000;
class_sizes[SITE_TOWN] = 100000;
class_sizes[SITE_FARM] = 500000;
class_sizes[SITE_FOREST] = 1000000;
class_sizes[SITE_UNASSIGNED] = 2000000;
}
RoadGrid::~RoadGrid()
{
}
/* TODO: constants, configuration */
Dictionary RoadGrid::build_diagram(int npatches, int center_count, int center_step, int spread, int dim)
{
printf("build_diagram %d %d %d %d %d\n", npatches, center_count, center_step, spread, dim);
Vector<Vector2i> centers;
/* zero is always used */
centers.push_back(Vector2i(0, 0));
float sa = rnd->randf() * 2.0 * Math_PI;
int i, bad = 0, cx, cp;
while (centers.size() < center_count) {
int center_x = CLAMP(center_step * (int)((rnd->randi() % spread) - spread / 2), -dim, dim);
int center_y = CLAMP(center_step * (int)((rnd->randi() % spread) - spread / 2), -dim, dim);
Vector2i c(center_x, center_y);
if (centers.find(c) < 0) {
centers.push_back(c);
bad = 0;
} else
bad++;
if (bad > 1000)
break;
}
assert(centers.size() > 1);
Vector<Vector2> points;
for (cx = 0; cx < centers.size(); cx++) {
float maxr = 0.0f;
for (cp = 0; cp < npatches * 8; cp++) {
float a = sa + sqrtf((float)cp) * 8.0f;
float r = (cp == 0) ? 0.0f : 100.0f + (float)cp * 100.0f + 50.0f * rnd->randf();
float x = floor(cosf(a) * r + (float)centers[cx].x);
float y = floor(sinf(a) * r + (float)centers[cx].y);
if (maxr < r)
maxr = r;
Vector2 p(x, y);
if (points.find(p) < 0)
points.push_back(p);
}
struct cluster cst;
cst.c = centers[cx];
cst.r = maxr + 50.0f;
clusters.push_back(cst);
}
PoolVector<Vector2> cpoints;
cpoints.resize(points.size());
memcpy(cpoints.write().ptr(), points.ptr(), points.size() * sizeof(Vector2));
Dictionary diagram = Voronoi::get_singleton()->generate_diagram(cpoints, 11);
return diagram;
}
bool RoadGrid::segment_intersects_rect(const Vector2 &a, const Vector2 &b, const Rect2 &rect)
{
real_t min = 0, max = 1;
const Vector2 &p_from = a;
const Vector2 &p_to = b;
for (int i = 0; i < 2; i++) {
real_t seg_from = p_from[i];
real_t seg_to = p_to[i];
real_t box_begin = rect.position[i];
real_t box_end = box_begin + rect.size[i];
real_t cmin, cmax;
if (seg_from < seg_to) {
if (seg_from > box_end || seg_to < box_begin) {
return false;
}
real_t length = seg_to - seg_from;
cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0;
cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1;
} else {
if (seg_to > box_end || seg_from < box_begin) {
return false;
}
real_t length = seg_to - seg_from;
cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0;
cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1;
}
if (cmin > min) {
min = cmin;
}
if (cmax < max) {
max = cmax;
}
if (max < min) {
return false;
}
}
return true;
}
void RoadGrid::draw_debug(Node *drawable, int size_x, int size_y) const
{
int i, j;
CanvasItem *ci = Object::cast_to<CanvasItem>(drawable);
if (!ci)
return;
if (bounds.size.x <= 0.0f || bounds.size.y <= 0.0f) {
printf("zero bounds %f %f\n", bounds.size.x, bounds.size.y);
return;
}
for (i = 0; i < map_sites.size(); i++) {
Vector2 a = (map_sites[i].pos - bounds.position) * Vector2(size_x, size_y) / bounds.size;
ci->draw_circle(a, 4.0f, Color(0.0f, 0.5f, 0.5f, 1.0f));
}
for (i = 0; i < map_hedges.size(); i++) {
Vector2 xa = diagram_vertices[map_hedges[i]->a];
Vector2 xb = diagram_vertices[map_hedges[i]->b];
Vector2 a = (xa - bounds.position) * Vector2(size_x, size_y) / bounds.size;
Vector2 b = (xb - bounds.position) * Vector2(size_x, size_y) / bounds.size;
ci->draw_line(a, b, Color(0.0f, 0.7f, 0.7f, 1.0f), 3.0f, true);
}
Rect2i g = rect_to_grid(bounds);
for (i = g.position.y - 1; i < g.position.y + g.size.y + 1; i++) {
for (j = g.position.x - 1; j < g.position.x + g.size.x + 1; j++) {
if (hedge_grid.has(j) && hedge_grid[j].has(i)) {
List<struct half_edge *> items = hedge_grid[j][i];
List<struct half_edge *>::Element *e;
for (e = items.front(); e; e = e->next()) {
struct half_edge *he = e->get();
assert(he->a >= 0);
assert(he->b >= 0);
assert(he->a != he->b);
assert(he->site >= 0);
Vector2 xa = diagram_vertices[he->a];
Vector2 xb = diagram_vertices[he->b];
const struct map_site *site = &map_sites[he->site];
Vector2 pos = (site->pos - bounds.position) * Vector2(size_x, size_y) / bounds.size;
ci->draw_circle(pos, 3.0f, Color(0.2f, 0.2f, 0.5f, 1.0f));
Vector2 a = (xa - bounds.position) * Vector2(size_x, size_y) / bounds.size;
Vector2 b = (xb - bounds.position) * Vector2(size_x, size_y) / bounds.size;
ci->draw_line(a, b, Color(0.2f, 0.2f, 0.7f, 1.0f), 2.0f, true);
}
}
}
}
}
void RoadGrid::index_site(struct map_site *site)
{
int i;
site->vertices_ind.resize(site->vertices.size());
site->polygon_ind.resize(site->polygon.size());
/* slow as fuck */
for (i = 0; i < site->vertices.size(); i++) {
int idx = diagram_vertices.find(site->vertices[i]);
if (idx < 0) {
idx = diagram_vertices.size();
diagram_vertices.push_back(site->vertices[i]);
}
site->vertices_ind.write[i] = idx;
}
for (i = 0; i < site->polygon.size(); i++) {
int idx = diagram_vertices.find(site->polygon[i]);
if (idx < 0) {
idx = diagram_vertices.size();
diagram_vertices.push_back(site->polygon[i]);
}
site->polygon_ind.write[i] = idx;
}
site->hedges.resize(site->polygon.size());
for (i = 0; i < site->polygon.size(); i++) {
int idx1 = site->polygon_ind[i];
int idx2 = site->polygon_ind[(i + 1) % site->polygon.size()];
struct half_edge he;
he.a = idx1;
he.b = idx2;
he.site = site->index;
/* use length to decide */
he.depth = 6.0f;
he.length = diagram_vertices[idx1].distance_to(diagram_vertices[idx2]);
site->hedges.write[i] = he;
}
}
void RoadGrid::process_diagram(const Dictionary &diagram)
{
const Array &sites = diagram["sites"];
int i, j;
map_sites.resize(sites.size());
int hedge_count = 0, hedge_idx;
printf("start processing sites\n");
for (i = 0; i < sites.size(); i++) {
struct map_site site;
const Dictionary &site_data = sites[i];
const Array &graphedges = site_data["graphedges"];
printf("processing site: %d\n", i);
site.graphedges.resize(graphedges.size());
for (j = 0; j < graphedges.size(); j++) {
const Dictionary &ge_data = graphedges[j];
struct graphedge ge;
ge.a = ge_data["a"];
ge.b = ge_data["b"];
ge.edge = ge_data["edge"];
site.graphedges.write[j] = ge;
}
site.index = site_data["index"];
site.pos = site_data["pos"];
site.polygon = site_data["polygon"];
site.vertices = site_data["vertices"];
site.site_type = SITE_UNASSIGNED;
site.cluster = -1;
index_site(&site);
hedge_count += site.hedges.size();
map_sites.write[i] = site;
}
printf("processing sites done\n");
/* Fill global half edges array and put in grid */
printf("processing %d half edges\n", hedge_count);
map_hedges.resize(hedge_count);
hedge_idx = 0;
for (i = 0; i < map_sites.size(); i++) {
for (j = 0; j < map_sites[i].hedges.size(); j++) {
/* bad bad constness */
struct half_edge *hedge = &map_sites.write[i].hedges.write[j];
map_hedges.write[hedge_idx] = hedge;
add_hedge_to_grid(hedge);
hedge_idx++;
}
}
printf("processing half edges done\n");
classify_sites();
printf("processing done, sites count: %d\n", map_sites.size());
}
void RoadGrid::build(Ref<Curve> curve, Ref<OpenSimplexNoise> noise)
{
rnd.instance();
rnd->randomize();
printf("build_diagram\n");
// Dictionary diagram = build_diagram(8, 2 + (rnd->randi() % 2), 100, 100, 50);
Dictionary diagram = build_diagram(8, 2, 100, 100, 30);
printf("build_diagram done\n");
printf("process_diagram\n");
process_diagram(diagram);
printf("process_diagram done\n");
printf("%d %d\n", curve.is_valid(), noise.is_valid());
assert(curve.is_valid() && noise.is_valid());
int i;
if (curve.is_valid() && noise.is_valid()) {
printf("building 3rd dimention\n");
diagram_vertex_heights.resize(diagram_vertices.size());
for (i = 0; i < diagram_vertices.size(); i++) {
float n = noise->get_noise_2dv(diagram_vertices[i]);
float t = (n + 1.0f) * 0.5f;
float d = MAX(1.0f, curve->interpolate_baked(t));
diagram_vertex_heights.write[i] = d;
}
for (i = 0; i < map_hedges.size(); i++) {
int x1 = map_hedges[i]->a;
int x2 = map_hedges[i]->b;
float xd = diagram_vertices[x1].distance_squared_to(diagram_vertices[x2]);
float dh = fabsf(diagram_vertex_heights[x2] - diagram_vertex_heights[x1]);
if (fabsf(dh / xd) > 0.02f)
diagram_vertex_heights.write[x2] = diagram_vertex_heights[x1] + dh / fabsf(dh) * 0.02f * xd;
}
printf("building 3rd dimention done\n");
}
}
Vector2 RoadGrid::get_influence(int x, int y) const
{
static int mind = 1000000;
static int maxd = 0;
List<struct half_edge *> hlist;
if (hedge_grid.has(x / grid_width) && hedge_grid[x / grid_width].has(y / grid_height))
hlist = hedge_grid[x / grid_width][y / grid_height];
if (hlist.size() == 0)
return Vector2();
List<struct half_edge *>::Element *e;
for (e = hlist.front(); e; e = e->next()) {
struct half_edge *he = e->get();
Vector2 a = diagram_vertices[he->a];
Vector2 b = diagram_vertices[he->b];
Vector2 p(x, y);
Vector2 seg[] = {a, b};
Vector2 pt = Geometry::get_closest_point_to_segment_2d(p, seg);
float d = pt.distance_squared_to(p);
if (d < he->depth * he->depth) {
Vector2 ret;
ret.x = 1.0f;
assert(diagram_vertex_heights.size() > he->a);
assert(diagram_vertex_heights.size() > he->b);
float h1 = diagram_vertex_heights[he->a];
float h2 = diagram_vertex_heights[he->b];
float l = he->length;
assert(l > 0.0f);
float m1 = pt.distance_to(a) / l;
float m2 = CLAMP(1.0f - m1, 0.0f, 1.0f);
float h = h1 * (1.0f - m1) + h2 * (1.0f - m2);
ret.y = h;
return ret;
}
}
return Vector2();
}
void RoadGrid::_bind_methods()
{
ClassDB::bind_method(D_METHOD("draw_debug", "drawable", "size_x", "size_y"), &RoadGrid::draw_debug);
ClassDB::bind_method(D_METHOD("get_influence", "x", "y"), &RoadGrid::get_influence);
ClassDB::bind_method(D_METHOD("build", "curve", "noise"), &RoadGrid::build);
}

197
modules/world/road_grid.h Normal file
View File

@@ -0,0 +1,197 @@
#ifndef ROAD_GRID_H
#define ROAD_GRID_H
#include <core/object.h>
#include <core/reference.h>
#include <scene/resources/curve.h>
#include <core/math/random_number_generator.h>
#include <modules/opensimplex/open_simplex_noise.h>
class CanvasItem;
/* TODO:
* a
* - Implement diagram edges with site reference.
* - Implement draw edges according to current position,
* indicating which are drawn.
* - Implement removal of draw edges by distance
*
* - Rewrite debug draw using distance logic.
* - Implement 3D position for road vertices based on heightmap object;
* - Implement SDF influence calculation based on distance to road
* - Implement SDF calculation for roads (height cutoff by segment)
* b
* - Implement nodes (intersections) for drawing road intersections
* - Implement draw edge splitting and position improvement.
* - Find "wall" edges?
* c
* - Implement lot system based on sites
* - Split lots to place buildings and other environment
* objects
* d
* - Implement 3D positions and geometry generation
*/
class RoadGrid: public Reference {
GDCLASS(RoadGrid, Object)
protected:
Ref<RandomNumberGenerator> rnd;
struct cluster {
Vector2i c;
float r;
};
List<struct cluster> clusters;
Dictionary build_diagram(int npatches, int center_count, int center_step,
int spread, int dim);
HashMap<int, int> class_sizes;
struct half_edge;
HashMap<int, HashMap<int, List<struct half_edge *> > > hedge_grid;
Rect2 bounds;
void set_class_size(int cl, int sz)
{
class_sizes[cl] = sz;
}
static void _bind_methods();
enum {
SITE_UNASSIGNED = 0,
SITE_FOREST,
SITE_FARM,
SITE_TOWN,
SITE_EMPTY,
SITE_MAX
};
struct graphedge {
int a, b;
int edge;
};
struct half_edge {
int a, b;
int site;
float depth;
float length;
};
struct map_site {
int index;
Vector2 pos;
Vector<struct graphedge> graphedges;
Vector<Vector2> vertices;
Vector<Vector2> polygon;
Vector<int> vertices_ind;
Vector<int> polygon_ind;
int site_type;
int cluster;
Vector<struct half_edge> hedges;
};
void index_site(struct map_site *site);
Vector<Vector2> diagram_vertices;
Vector<float> diagram_vertex_heights;
Vector<struct map_site> map_sites;
Vector<struct half_edge *> map_hedges;
void classify_sites()
{
int i, j;
for (j = 0; j < map_sites.size(); j++) {
Rect2 r;
for (i = 0; i < map_sites[j].polygon.size(); i++) {
if (i == 0) {
r.position = map_sites[j].polygon[0];
r.size = Vector2();
} else {
r.expand_to(map_sites[j].polygon[i]);
}
}
int cl_area = (int)(r.get_area() + 1.0f);
for (i = 0; i < SITE_MAX; i++) {
if (class_sizes.has(i))
if (cl_area <= class_sizes[i]) {
map_sites.write[j].site_type = i;
break;
}
}
printf("area: %d class: %d\n", cl_area, map_sites[j].site_type);
}
}
void process_diagram(const Dictionary &diagram);
bool segment_intersects_rect(const Vector2 &a, const Vector2 &b, const Rect2 &rect);
inline bool segment_in_grid_rect(const Vector2 &a, const Vector2 &b, int x, int y)
{
Rect2 r((float)(x * grid_width), (float)(y * grid_height), grid_width, grid_height);
return segment_intersects_rect(a, b, r);
}
inline Rect2 segment_to_rect(const Vector2 &a, const Vector2 &b) const
{
Rect2 r(a, Vector2());
r.expand_to(b);
return r;
}
inline Rect2i rect_to_grid(const Rect2 &r) const
{
Rect2i ret;
ret.position.x = get_grid_x(r.position.x);
ret.position.y = get_grid_y(r.position.y);
ret.size.x = get_grid_x(r.size.x) + 1;
ret.size.y = get_grid_y(r.size.y) + 1;
return ret;
}
inline Rect2 get_grid_rect(int x, int y) const
{
Rect2 rect;
rect.position.x = (float)x * grid_width;
rect.position.y = (float)y * grid_height;
rect.size.x = grid_width;
rect.size.x = grid_height;
return rect;
}
inline void insert_hedge_to_grid_cell(int x, int y, struct half_edge *hedge)
{
if (hedge_grid.has(x) && hedge_grid[x].has(y))
hedge_grid[x][y].push_back(hedge);
else {
List<struct half_edge *> items;
items.push_back(hedge);
hedge_grid[x][y] = items;
}
}
inline void add_hedge_to_grid(struct half_edge *hedge)
{
Vector2 a = diagram_vertices[hedge->a];
Vector2 b = diagram_vertices[hedge->b];
if (bounds.position.length_squared() == 0.0f && bounds.position.length_squared() == 0.0f) {
bounds.position.x = a.x;
bounds.position.y = a.y;
} else
bounds.expand_to(a);
bounds.expand_to(b);
Rect2 r = segment_to_rect(a, b).grow(1.0f);
Rect2i rgrid = rect_to_grid(r);
int x, y;
for (y = 0; y < rgrid.size.y; y++) {
for (x = 0; x < rgrid.size.x; x++) {
int px = rgrid.position.x + x;
int py = rgrid.position.y + y;
Rect2 xr = get_grid_rect(px, py).grow(16.0f);
if (segment_intersects_rect(a, b, xr))
insert_hedge_to_grid_cell(px, py, hedge);
}
}
}
inline int get_grid_x(float x) const
{
return (int)(x / grid_width);
}
inline int get_grid_y(float y) const
{
return (int)(y / grid_height);
}
float grid_width, grid_height;
friend class Roads;
public:
void build(Ref<Curve> curve, Ref<OpenSimplexNoise> noise);
void draw_debug(Node *drawable, int size_x, int size_y) const;
Vector2 get_influence(int x, int y) const;
RoadGrid();
~RoadGrid();
};
#endif

View File

@@ -1,13 +1,13 @@
#include "road_map.h"
#define ROAD_MAP_TESTS
#define MIN_X -10000
#define MAX_X 10000
#define MIN_Z -10000
#define MAX_Z 10000
#define MIN_Y -1000
#define MAX_Y 1000
#define MIN_X (-10000)
#define MAX_X (10000)
#define MIN_Z (-10000)
#define MAX_Z (10000)
#define MIN_Y (-100)
#define MAX_Y (300)
#define HIGHWAY_LENGTH_MIN 100
#define HIGHWAY_LENGTH_MAX 300
static RoadMap *g_road_map_data = NULL;
RoadMap *RoadMap::get_singleton()
@@ -25,9 +25,40 @@ void RoadMap::destroy_singleton()
}
RoadMap::RoadMap()
{
noise.instance();
rnd.instance();
}
RoadMap::~RoadMap()
{
}
class PrimaryNetwork {
Vector<Vector3> points;
friend class RoadMap;
void start();
};
void PrimaryNetwork::start()
{
#if 0
Vector3 start_pos, start_dir;
float l, a;
Transform xform;
start_pos.x = MIN_X + ((float)(MAX_X - MIN_X)) * rnd.randf();
start_pos.y = MIN_Y + ((float)(MAX_X - MIN_Y)) * rnd.randf();
start_pos.z = MIN_Z + ((float)(MAX_X - MIN_Z)) * rnd.randf();
l = HIGHWAY_LENGTH_MIN + ((float)(HIGHWAY_LENGTH_MAX - HIGHWAY_LENGTH_MIN)) * rnd.randf();
start_dir = Vector3(l, 0.0f, 0.0f);
start_pos.y = CLAMP(start_pos.y, 1.0f, MAX_Y);
xform = Transform();
#endif
}
void RoadMap::gen_primary_network()
{
PrimaryNetwork p;
p.start();
}

View File

@@ -1,4 +1,7 @@
#include <core/object.h>
#include <core/reference.h>
#include <core/math/random_number_generator.h>
#include <modules/opensimplex/open_simplex_noise.h>
class RoadMap: public Object {
GDCLASS(RoadMap, Object)
@@ -10,26 +13,47 @@ public:
static void destroy_singleton();
protected:
Vector<int> vertices;
struct segment {
int v1, v2;
uint32_t flags;
Ref<OpenSimplexNoise> noise;
Ref<RandomNumberGenerator> rnd;
struct Segment {
Vector3 p1, p2;
};
Vector<segment> segments;
struct intersection {
#define MAX_NEIGHBORS 4
int neighbors[MAX_NEIGHBORS];
int ncount;
uint32_t flags;
Vector<Segment> segments;
struct Pq {
struct PqItem {
struct Segment data;
int priority;
};
List<PqItem> queue;
void push(int priority, const struct Segment &seg)
{
List<PqItem>::Element *e;
PqItem it;
it.data = seg;
it.priority = priority;
for (e = queue.front(); e; e = e->next()) {
PqItem item = e->get();
if (item.priority > priority) {
queue.insert_before(e, it);
break;
}
if (!e->next())
queue.push_back(it);
}
}
Segment peek()
{
return queue.front()->get().data;
}
Segment pop()
{
Segment seg = queue.front()->get().data;
queue.pop_front();
return seg;
}
};
Vector<intersection> intersections;
/* cylindric area to define road */
struct area {
int x, z;
int radius;
int type;
};
Vector<area> areas;
struct Pq queue;
void gen_primary_network();
};

23
modules/world/road_map2.h Normal file
View File

@@ -0,0 +1,23 @@
#ifndef ROAD_MAP2
#define ROAD_MAP2
#include <core/resource.h>
#include <core/math/random_number_generator.h>
#include <modules/opensimplex/open_simplex_noise.h>
#include "density_map.h"
class RoadMap2: public Resource {
GDCLASS(RoadMap2, Resource);
public:
RoadMap2();
~RoadMap2();
protected:
Ref<RandomNumberGenerator> rnd;
Ref<OpenSimplexNoise> noise;
bool _set(const StringName &p_name, const Variant &p_value);
bool _get(const StringName &p_name, Variant &r_ret) const;
void _get_property_list(List<PropertyInfo> *p_list) const;
static void _bind_methods();
private:
int seed;
};
#endif

600
modules/world/roads.cpp Normal file
View File

@@ -0,0 +1,600 @@
#include <cassert>
#include <core/resource.h>
#include <core/sort_array.h>
#include <scene/resources/packed_scene.h>
#include <scene/main/viewport.h>
#include <scene/3d/camera.h>
#include <scene/3d/physics_body.h>
#include <scene/3d/collision_shape.h>
#include "roads.h"
void Roads::_bind_methods()
{
ClassDB::bind_method(D_METHOD("curve_mesh", "points", "width", "flags", "sidewalk_width"), &Roads::curve_mesh);
ClassDB::bind_method(D_METHOD("add_scene_element", "root", "surface", "p2", "shape"), &Roads::add_scene_element);
}
void Roads::_get_property_list(List<PropertyInfo> *p_list) const
{
p_list->push_back(PropertyInfo(Variant::OBJECT, "road_data", PROPERTY_HINT_RESOURCE_TYPE, "PackedScene"));
p_list->push_back(PropertyInfo(Variant::OBJECT, "curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"));
p_list->push_back(PropertyInfo(Variant::OBJECT, "noise", PROPERTY_HINT_RESOURCE_TYPE, "OpenSimplexNoise"));
}
bool Roads::_get(const StringName &p_name, Variant &r_ret) const
{
if (p_name == "road_data") {
r_ret = road_data;
return true;
} else if (p_name == "curve") {
r_ret = curve;
return true;
} else if (p_name == "noise") {
r_ret = noise;
return true;
}
return false;
}
bool Roads::_set(const StringName &p_name, const Variant &p_value)
{
bool update = false;
if (p_name == "road_data") {
road_data = p_value;
update = true;
} else if (p_name == "curve") {
curve = p_value;
update = true;
} else if (p_name == "noise") {
noise = p_value;
update = true;
}
if (update) {
update_all();
_change_notify();
}
return update;
}
void Roads::sort_angle(Vector<int> &sort_data)
{
struct comparator {
Vector3 *vertices;
bool operator()(int a, int b) const {
Vector3 p1 = vertices[a];
Vector3 p2 = vertices[b];
Vector2 rp1(p1.x, p1.z);
Vector2 rp2(p2.x, p2.z);
return rp1.angle() < rp2.angle();
}
};
SortArray<int, struct comparator> sorter;
sorter.compare.vertices = vertices.write().ptr();
sorter.sort(sort_data.ptrw(), sort_data.size());
}
int Roads::find_edge(int a, int b)
{
int i;
RoadGrid *rg = RoadsData::get_singleton()->get_road_grid();
for (i = 0; i < rg->map_hedges.size(); i++) {
if (rg->map_hedges[i]->a == a &&
rg->map_hedges[i]->b == b)
return i;
}
return -1;
}
void Roads::setup_vshapes()
{
int i, j;
RoadGrid *rg = RoadsData::get_singleton()->get_road_grid();
vertices.resize(rg->diagram_vertices.size());
for (i = 0; i < vertices.size(); i++) {
vertices.write()[i].x = rg->diagram_vertices[i].x;
vertices.write()[i].y = rg->diagram_vertex_heights[i];
vertices.write()[i].z = rg->diagram_vertices[i].y;
}
List<struct vshape> vdata_list;
for (i = 0; i < rg->map_hedges.size(); i++) {
for (j = 0; j < rg->map_hedges.size(); j++) {
if (i == j)
continue;
if (rg->map_hedges[i]->b !=
rg->map_hedges[j]->a)
continue;
if (rg->map_hedges[i]->site !=
rg->map_hedges[j]->site)
continue;
int a, b1, b2;
struct vshape v;
/* star topology */
a = rg->map_hedges[i]->b;
b1 = rg->map_hedges[i]->a;
b2 = rg->map_hedges[j]->b;
v.e1 = i;
v.e2 = j;
v.site = rg->map_hedges[i]->site;
v.area.position = vertices[a];
v.area.expand_to(vertices[b1] + Vector3(0, 1, 0));
v.area.expand_to(vertices[b2] + Vector3(0, -1, 0));
v.instance = -1;
Vector3 p1 = vertices[rg->map_hedges[v.e1]->a];
Vector3 p2 = vertices[rg->map_hedges[v.e1]->b];
Vector3 p3 = vertices[rg->map_hedges[v.e2]->b];
p1 = (p2 + (p1 - p2) * 0.5f).snapped(Vector3(4.0f, 0.1f, 4.0f));
p3 = (p2 + (p3 - p2) * 0.5f).snapped(Vector3(4.0f, 0.1f, 4.0f));
p2 = p2.snapped(Vector3(4.0f, 0.1f, 4.0f));
v.p1 = p1;
v.p2 = p2;
v.p3 = p3;
/* add v-shape only if we can actually generate it */
if (v.p1.distance_squared_to(v.p2) > 2.0f &&
v.p2.distance_squared_to(v.p3) > 2.0f &&
v.p1.distance_squared_to(v.p3) > 2.0f)
vdata_list.push_back(v);
}
}
vshapes.resize(vdata_list.size());
for (i = 0; i < vdata_list.size(); i++)
vshapes.write()[i] = vdata_list[i];
for (i = 0; i < vshapes.size(); i++) {
for (j = 0; j < vshapes.size(); j++) {
if (i == j)
continue;
if (vshapes[i].e1 == vshapes[j].e1)
vshapes.write()[j].p1 = vshapes[i].p1;
if (vshapes[i].e2 == vshapes[j].e1)
vshapes.write()[j].p1 = vshapes[i].p3;
if (vshapes[i].e1 == vshapes[j].e2)
vshapes.write()[j].p3 = vshapes[i].p1;
if (vshapes[i].e2 == vshapes[j].e2)
vshapes.write()[j].p3 = vshapes[i].p3;
}
}
for (i = 0; i < vshapes.size(); i++) {
const struct vshape &v = vshapes[i];
assert(rg->map_hedges[v.e1]->site == rg->map_hedges[v.e2]->site);
assert(v.e1 >= 0 && v.e2 >= 0 && v.e1 != v.e2);
int e1a = rg->map_hedges[vshapes[i].e1]->a;
int e1b = rg->map_hedges[vshapes[i].e1]->b;
int e2a = rg->map_hedges[vshapes[i].e2]->a;
int e2b = rg->map_hedges[vshapes[i].e2]->b;
printf("vshape %d: %d: %d: %f %f %f -> %d: %f %f %f -> %d: %d: %f %f %f -> %d: %f %f %f\n",
i,
vshapes[i].e1,
e1a,
vertices[e1a].x,
vertices[e1a].y,
vertices[e1a].z,
e1b,
vertices[e1b].x,
vertices[e1b].y,
vertices[e1b].z,
vshapes[i].e2,
e2a,
vertices[e2a].x,
vertices[e2a].y,
vertices[e2a].z,
e2b,
vertices[e2b].x,
vertices[e2b].y,
vertices[e2b].z
);
}
}
void Roads::update_all()
{
int i;
RoadGrid *rg = RoadsData::get_singleton()->get_road_grid();
if (road_data.is_valid()) {
Node *tmp = road_data->instance();
for (i = 0; i < tmp->get_child_count(); i++) {
Node *c = tmp->get_child(i);
MeshInstance *mi = Object::cast_to<MeshInstance>(c);
if (mi) {
String name = mi->get_name();
Ref<ArrayMesh> mesh = mi->get_mesh();
Array data = mesh->surface_get_arrays(0);
mesh_data[name] = data;
if (name == "road_main")
mat = mesh->surface_get_material(0);
}
}
if (curve.is_valid() && noise.is_valid())
rg->build(curve, noise);
printf("vertices: %d\n", rg->diagram_vertices.size());
printf("heights: %d\n", rg->diagram_vertex_heights.size());
printf("edges: %d\n", rg->map_hedges.size());
setup_vshapes();
}
}
Roads::Roads()
{
body = memnew(StaticBody);
}
Roads::~Roads()
{
memdelete(body);
}
Vector3 Roads::calculate_offsets(const Array &data) const
{
float minx = 0.0f, maxx = 0.0f, minz = 0.0f, maxz = 0.0f;
PoolVector<Vector3> verts = data[Mesh::ARRAY_VERTEX];
int i;
Vector3 ret;
for (i = 0; i < verts.size(); i++) {
if (minx > verts.read()[i].x)
minx = verts.read()[i].x;
if (maxx < verts.read()[i].x)
maxx = verts.read()[i].x;
if (minz > verts.read()[i].z)
minz = verts.read()[i].z;
if (maxz < verts.read()[i].z)
maxz = verts.read()[i].z;
}
ret.x = fabsf(maxx - minx);
ret.z = fabsf(maxz - minz);
return ret;
}
Vector3 Roads::quadratic_bezier(const Vector3 &p0, const Vector3 &p1,
const Vector3 &p2, float t) const
{
Vector3 q0 = p0.linear_interpolate(p1, t);
Vector3 q1 = p1.linear_interpolate(p2, t);
Vector3 r = q0.linear_interpolate(q1, t);
return r;
}
void Roads::all_offsets()
{
const String *k;
for (k = mesh_data.next(NULL); k; k = mesh_data.next(k))
offsets[*k] = calculate_offsets(mesh_data[*k]);
}
enum {
FLAGS_SIDEWALK = (1 << 0),
FLAGS_INTERSECTION = (1 << 1),
FLAGS_WALL = (1 << 2),
};
PoolVector<String> Roads::build_item_list(float width, int flags, float sidewalk_width) const
{
PoolVector<String> ret;
float tx = 0.0f;
while (tx < width) {
ret.push_back("road_main");
tx += offsets["road_main"].x;
}
if (flags & FLAGS_SIDEWALK) {
ret.push_back("sidewalk_start");
tx = 0.0f;
while (tx < sidewalk_width) {
ret.push_back("sidewalk");
tx += offsets["sidewalk"].x;
}
ret.push_back("sidewalk_end");
}
if (flags & FLAGS_WALL)
ret.push_back("wall");
return ret;
}
Ref<Curve3D> Roads::build_curve(Vector3 p1, Vector3 p2, Vector3 p3, float total_width) const
{
Ref<Curve3D> curve3;
curve3.instance();
Vector3 dir1 = (p1 - p2).normalized();
Vector3 dir2 = (p3 - p2).normalized();
float qt = 0.0f;
curve3->add_point(p1);
while (qt <= 1.0f) {
Vector3 p = quadratic_bezier(p2 + dir1 * total_width * 1.8f, p2, p2 + dir2 * total_width * 1.8f, qt);
curve3->add_point(p.snapped(Vector3(0.1, 0.1, 0.1)));
qt += 0.1f;
}
curve3->add_point(p3);
curve3->set_bake_interval(4.0f);
assert(curve3->get_baked_length() > 0);
return curve3;
}
Array Roads::curve_mesh(PoolVector<Vector3> points, float width, int flags, float sidewalk_sidth)
{
float tx = 0.0f, total_width = 0.0f, t = 0.0f, l;
int i;
Array ret;
all_offsets();
PoolVector<String> parts_list = build_item_list(width, flags, sidewalk_sidth);
for (i = 0; i < parts_list.size(); i++)
total_width += offsets[parts_list[i]].x;
assert(total_width >= 3.0f);
Ref<Curve3D> curve3 = build_curve(points[0], points[1], points[2], total_width);
l = curve3->get_baked_length();
assert(l > 0.0f);
PoolVector<Vector3> new_verts, new_normals;
PoolVector<Vector2> new_uvs;
PoolVector<int> new_index;
ret.resize(Mesh::ARRAY_MAX);
while (t <= l) {
tx = 0.0f;
int part = 0;
while (tx < total_width) {
int k;
Array data = mesh_data[parts_list[part]];
int b = new_verts.size();
PoolVector<Vector3> verts = data[Mesh::ARRAY_VERTEX];
PoolVector<Vector3> normals = data[Mesh::ARRAY_NORMAL];
new_verts.resize(b + verts.size());
new_normals.resize(b + normals.size());
Transform xform;
Vector3 offt1, offt2;
for (k = 0; k < verts.size(); k++) {
Vector3 base = verts[k];
float point = t + 2.0 + base.z;
float right = verts[k].x + tx;
if (t <= l - 2.0) {
offt1 = curve3->interpolate_baked(point, true);
offt2 = curve3->interpolate_baked(point + 2.0, true);
assert(offt1.distance_squared_to(offt2) > 0.0f);
xform = Transform(Basis(), offt1).looking_at(offt2, Vector3(0.0f, 1.0f, 0.0f));
} else {
offt1 = curve3->interpolate_baked(point - 2.0, true);
offt2 = curve3->interpolate_baked(point, true);
assert(offt1.distance_squared_to(offt2) > 0.0f);
xform = Transform(Basis(), offt1).looking_at(offt2, Vector3(0.0f, 1.0f, 0.0f));
offt1 = offt2;
}
xform.origin = Vector3();
if (right < 0.25f)
right -= 0.15f;
Vector3 nvert = offt1 + xform.xform(Vector3(right, verts[k].y, 0.0));
Vector3 n = xform.xform(normals[k]);
if (right < 0.15f &&
((flags & FLAGS_INTERSECTION) != 0) &&
nvert.distance_squared_to(points[1]) < total_width * total_width * 2.5f) {
new_verts.write()[b + k] = points[1];
new_normals.write()[b + k] = Vector3(0.0f, 1.0f, 0.0f);
} else {
new_verts.write()[b + k] = nvert;
new_normals.write()[b + k] = n;
}
}
new_uvs.append_array(data[Mesh::ARRAY_TEX_UV]);
int idx = new_index.size();
PoolVector<int> index = data[Mesh::ARRAY_INDEX];
new_index.resize(idx + index.size());
for (k = 0; k < index.size(); k++)
new_index.write()[idx + k] = index[k] + b;
tx += offsets[parts_list[part]].x;
part += 1;
if (part >= parts_list.size())
break;
}
t += 2.0f;
}
ret[Mesh::ARRAY_VERTEX] = new_verts;
ret[Mesh::ARRAY_NORMAL] = new_normals;
ret[Mesh::ARRAY_TEX_UV] = new_uvs;
ret[Mesh::ARRAY_INDEX] = new_index;
return ret;
}
static Ref<ConcavePolygonShape> create_concave_polygon_shape(Vector<Array> surfaces) {
PoolVector<Vector3> face_points;
int face_points_size = 0;
//find the correct size for face_points
for (int i = 0; i < surfaces.size(); i++) {
const Array &surface_arrays = surfaces[i];
if (surface_arrays.size() == 0) {
// That surface is empty
continue;
}
// If the surface is not empty then it must have an expected amount of data arrays
ERR_CONTINUE(surface_arrays.size() != Mesh::ARRAY_MAX);
PoolVector<int> indices = surface_arrays[Mesh::ARRAY_INDEX];
face_points_size += indices.size();
}
face_points.resize(face_points_size);
if (face_points_size < 3) {
return Ref<ConcavePolygonShape>();
}
//copy the points into it
int face_points_offset = 0;
for (int i = 0; i < surfaces.size(); i++) {
const Array &surface_arrays = surfaces[i];
if (surface_arrays.size() == 0) {
continue;
}
PoolVector<Vector3> positions = surface_arrays[Mesh::ARRAY_VERTEX];
PoolVector<int> indices = surface_arrays[Mesh::ARRAY_INDEX];
ERR_FAIL_COND_V(positions.size() < 3, Ref<ConcavePolygonShape>());
ERR_FAIL_COND_V(indices.size() < 3, Ref<ConcavePolygonShape>());
ERR_FAIL_COND_V(indices.size() % 3 != 0, Ref<ConcavePolygonShape>());
int face_points_count = face_points_offset + indices.size();
{
PoolVector<Vector3>::Write w = face_points.write();
PoolVector<int>::Read index_r = indices.read();
PoolVector<Vector3>::Read position_r = positions.read();
for (int p = face_points_offset; p < face_points_count; ++p) {
w[p] = position_r[index_r[p - face_points_offset]];
}
}
face_points_offset += indices.size();
}
Ref<ConcavePolygonShape> shape = memnew(ConcavePolygonShape);
shape->set_faces(face_points);
return shape;
}
int Roads::make_vmesh(Node *root, Ref<Material> mat, Ref<ArrayMesh> mesh, MeshInstance *xmi, Vector3 p1, Vector3 p2,
Vector3 p3, float width, int flags, float sidewalk_width)
{
Vector3 m1 = p1 - p2;
Vector3 m2 = Vector3();
Vector3 m3 = p3 - p2;
Vector3 pts[] = {m1, m2, m3};
int i;
PoolVector<Vector3> points;
assert(p1.distance_squared_to(p2) > 2.0f);
assert(p2.distance_squared_to(p3) > 2.0f);
assert(p1.distance_squared_to(p3) > 2.0f);
assert(m1.distance_squared_to(m2) > 2.0f);
assert(m2.distance_squared_to(m3) > 2.0f);
assert(m1.distance_squared_to(m3) > 2.0f);
points.resize(3);
for (i = 0; i < 3; i++)
points.write()[i] = pts[i].snapped(Vector3(4.0f, 0.1f, 4.0f));
Array rdata = curve_mesh(points, width, flags, sidewalk_width);
Ref<ArrayMesh> mdata = mesh;
assert(mdata.is_valid());
mdata->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, rdata);
assert(mdata->get_surface_count() > 0);
Vector<Array> surfaces;
surfaces.push_back(rdata);
Ref<ConcavePolygonShape> shape = create_concave_polygon_shape(surfaces);
mdata->surface_set_material(0, mat);
xmi->set_mesh(mdata);
call_deferred("add_scene_element", root, xmi, p2, shape);
return xmi->get_instance_id();
}
void Roads::add_scene_element(Node *root, Node *xnode, const Vector3 &p2, Ref<ConcavePolygonShape> shape)
{
MeshInstance *xmi = Object::cast_to<MeshInstance>(xnode);
if (!xmi)
return;
root->add_child(xmi);
Transform xform(Basis(), p2);
assert(xmi->get_mesh().is_valid() && xmi->get_mesh()->get_surface_count() > 0);
xmi->set_global_transform(xform);
CollisionShape *cs = memnew(CollisionShape);
cs->set_shape(shape);
body->add_child(cs);
}
void Roads::process_vshapes()
{
Transform xform = get_viewport()->get_camera()->get_global_transform();
AABB camarea;
camarea.position = xform.origin;
camarea.grow_by(550.0f);
int i;
List<int> active_vshapes;
printf("camera %f %f %f\n", xform.origin.x, xform.origin.y, xform.origin.z);
for (i = 0; i < vshapes.size(); i++) {
if (active_vshapes.size() > 32)
break;
if (vshapes[i].instance >= 0)
continue;
#if 0
active_vshapes.push_back(i);
#else
if (vshapes[i].area.intersects(camarea))
active_vshapes.push_back(i);
else if (vshapes[i].area.encloses(camarea))
active_vshapes.push_back(i);
else if (camarea.encloses(vshapes[i].area))
active_vshapes.push_back(i);
else if (camarea.intersects(vshapes[i].area))
active_vshapes.push_back(i);
#endif
}
printf("active vshapes %d\n", active_vshapes.size());
List<int>::Element *e;
for (e = active_vshapes.front(); e; e = e->next()) {
i = e->get();
const struct vshape &v = vshapes[i];
assert(v.p1.distance_squared_to(v.p2) > 2.0f);
assert(v.p2.distance_squared_to(v.p3) > 2.0f);
assert(v.p1.distance_squared_to(v.p3) > 2.0f);
if (vshapes[i].instance < 0) {
if (thread.thread.is_started())
thread.thread.wait_to_finish();
thread.mat = mat;
thread.vshape = i;
thread.width = 6.0;
thread.sidewalk_width = 3.0;
thread.flags = FLAGS_SIDEWALK|FLAGS_INTERSECTION;
thread.root = this;
Ref<ArrayMesh> mesh;
mesh.instance();
thread.mesh = mesh;
thread.xmi = memnew(MeshInstance);
thread.thread.start(generate_threaded, &thread);
}
}
}
void Roads::_notification(int p_what)
{
switch(p_what) {
case NOTIFICATION_PROCESS:
if ((counter % 100) == 0)
process_vshapes();
counter++;
break;
case NOTIFICATION_READY:
counter = 0;
set_process(true);
add_child(body);
break;
}
}
void Roads::generate_threaded(void *p_userdata)
{
struct thread_data *data = (struct thread_data *)p_userdata;
Roads *obj = Object::cast_to<Roads>(data->root);
obj->mutex.lock();
Vector3 p1 = obj->vshapes[data->vshape].p1;
Vector3 p2 = obj->vshapes[data->vshape].p2;
Vector3 p3 = obj->vshapes[data->vshape].p3;
obj->mutex.unlock();
int instance = obj->make_vmesh(obj, data->mat, data->mesh, data->xmi, p1, p2, p3, data->width, data->flags, data->sidewalk_width);
assert(instance >= 0);
obj->mutex.lock();
obj->vshapes.write()[data->vshape].instance = instance;
obj->mutex.unlock();
}
RoadsData::RoadsData()
{
rg = memnew(RoadGrid);
}
RoadsData::~RoadsData()
{
memdelete(rg);
rg = NULL;
}
static RoadsData *g_roads_data = NULL;
RoadsData* RoadsData::get_singleton()
{
return g_roads_data;
}
void RoadsData::create_singleton()
{
g_roads_data = memnew(RoadsData);
}
void RoadsData::destroy_singleton()
{
memdelete(g_roads_data);
g_roads_data = NULL;
}
RoadGrid *RoadsData::get_road_grid()
{
return rg;
}
void RoadsData::_bind_methods()
{
ClassDB::bind_method(D_METHOD("get_road_grid"), &RoadsData::get_road_grid);
}

104
modules/world/roads.h Normal file
View File

@@ -0,0 +1,104 @@
#include <modules/world/road_grid.h>
#include <scene/main/node.h>
#include <scene/3d/mesh_instance.h>
#include <scene/3d/immediate_geometry.h>
#include <scene/resources/concave_polygon_shape.h>
class StaticBody;
class Roads: public MeshInstance {
GDCLASS(Roads, MeshInstance);
protected:
Mutex mutex;
Ref<Curve> curve;
Ref<OpenSimplexNoise> noise;
Ref<Material> mat;
Ref<PackedScene> road_data;
HashMap<String, Array> mesh_data;
HashMap<String, Vector3> offsets;
bool _set(const StringName &p_name, const Variant &p_value);
bool _get(const StringName &p_name, Variant &r_ret) const;
void _get_property_list(List<PropertyInfo> *p_list) const;
static void _bind_methods();
void update_all();
PoolVector<Vector3> vertices;
struct thread_data {
Thread thread;
Ref<Material> mat;
int vshape;
float width;
float sidewalk_width;
int flags;
Node *root;
Ref<ArrayMesh> mesh;
MeshInstance *xmi;
};
struct thread_data thread;
static void generate_threaded(void *p_userdata);
StaticBody *body;
#if 0
struct edge_data {
int a;
int b;
float width;
bool sidewalk;
float sidewalk_width;
edge_data(): a(-1), b(-1), width(1.0f), sidewalk(false), sidewalk_width(1.0f)
{}
};
#endif
struct vshape {
AABB area;
int instance;
int e1, e2;
int site;
Vector3 p1, p2, p3;
};
#if 0
PoolVector<struct edge_data> edges;
#endif
PoolVector<struct vshape> vshapes;
void setup_vshapes();
void sort_angle(Vector<int> &sort_data);
#if 0
void extrude_direct(Array &out, const Array &arrays, const struct edge_data *data) const;
void extrude_vshape(Array &out, const Array &arrays, const struct vshape *data) const;
#endif
int find_edge(int a, int b);
void _notification(int p_what);
int counter;
friend class RoadsData;
public:
#if 0
void update(Ref<RoadGrid> roads, Vector3 where, float radius);
#endif
Roads();
~Roads();
Vector3 calculate_offsets(const Array &data) const;
Vector3 quadratic_bezier(const Vector3 &p1, const Vector3 &p2,
const Vector3 &p3, float t) const;
void all_offsets();
PoolVector<String> build_item_list(float width, int flags, float sidewalk_width) const;
Ref<Curve3D> build_curve(Vector3 p1, Vector3 p2, Vector3 p3, float total_width) const;
Array curve_mesh(PoolVector<Vector3> points, float width, int flags, float sidewalk_width);
int make_vmesh(Node *root, Ref<Material> mat, Ref<ArrayMesh> mesh, MeshInstance *xmi, Vector3 p1, Vector3 p2,
Vector3 p3, float width, int flags, float sidewalk_width);
void process_vshapes();
void add_scene_element(Node *root, Node *xnode, const Vector3 &p2, Ref<ConcavePolygonShape> shape);
};
class RoadsData: public Object {
GDCLASS(RoadsData, Object);
protected:
RoadGrid *rg;
static void _bind_methods();
public:
RoadsData();
~RoadsData();
static RoadsData *get_singleton();
static void create_singleton();
static void destroy_singleton();
RoadGrid *get_road_grid();
};

View File

@@ -88,9 +88,10 @@ Ref<DensityMap> WorldGenerator::get_density_map() const
return density_map;
}
void WorldGenerator::generate_block(VoxelBlockRequest &input) {
VoxelGenerator::Result WorldGenerator::generate_block(VoxelBlockRequest &input) {
ERR_FAIL_COND(_noise.is_null());
ERR_FAIL_COND_V(input.voxel_buffer.is_null(), Result());
ERR_FAIL_COND_V(_noise.is_null(), Result());
#ifdef WORLD_MAP_TESTS
WorldMapData *wmd = WorldMapData::get_singleton();
if (!wmd->tests_run) {
@@ -98,6 +99,7 @@ void WorldGenerator::generate_block(VoxelBlockRequest &input) {
wmd->tests_run = true;
}
#endif
Result result;
VoxelBuffer &out_buffer = **input.voxel_buffer;
WorldGenerator::generate(
@@ -106,6 +108,7 @@ void WorldGenerator::generate_block(VoxelBlockRequest &input) {
input.origin_in_voxels, input.lod);
out_buffer.compress_uniform_channels();
return result;
}
void WorldGenerator::_bind_methods() {

View File

@@ -45,7 +45,7 @@ public:
void set_density_map(Ref<DensityMap> map);
Ref<DensityMap> get_density_map() const;
void generate_block(VoxelBlockRequest &input) override;
Result generate_block(VoxelBlockRequest &input) override;
float height_func(int x, int y, int z);
private:

View File

@@ -0,0 +1,97 @@
#include <cmath>
#include "world_height_map.h"
void WorldHeightMap::_get_property_list(List<PropertyInfo> *p_list) const
{
p_list->push_back(PropertyInfo(Variant::OBJECT, "noise", PROPERTY_HINT_RESOURCE_TYPE, "OpenSimplexNoise"));
p_list->push_back(PropertyInfo(Variant::OBJECT, "curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"));
}
bool WorldHeightMap::_get(const StringName &p_name, Variant &r_ret) const
{
if (p_name == "noise") {
r_ret = noise;
return true;
} else if (p_name == "curve") {
r_ret = curve;
return true;
}
const String pv = p_name.operator String();
return false;
}
bool WorldHeightMap::_set(const StringName &p_name, const Variant &p_value)
{
bool update = false;
if (p_name == "noise") {
noise = p_value;
update = true;
} else if (p_name == "curve") {
curve = p_value;
update = true;
}
if (update) {
update_all();
_change_notify();
}
return update;
}
float WorldHeightMap::get_base_steepness(float x, float y)
{
float tstep = 10.0f;
float xp = ceil(x / tstep) * tstep;
float xm = floor(x / tstep) * tstep;
float yp = ceil(y / tstep) * tstep;
float ym = floor(y / tstep) * tstep;
float hp = curve->interpolate_baked((noise->get_noise_2d(xp, yp) + 1.0f) * 0.5f);
float hm = curve->interpolate_baked((noise->get_noise_2d(xp, yp) + 1.0f) * 0.5f);
Vector3 d = Vector3(xp, hp, yp) - Vector3(xm, hm, ym);
return fabs(cosf(d.angle_to(Vector3(0.0f, 1.0f, 0.0f))));
}
float WorldHeightMap::get_surface_height(float x, float y)
{
float s = get_base_steepness(x, y);
if (s > 0.5f) {
float n = (noise->get_noise_2d(x, y) + 1.0f) * 0.5f;
float d = curve->interpolate_baked(n);
return d;
} else {
float tstep = 10.0f;
float xp = ceil(x / tstep) * tstep;
float xm = floor(x / tstep) * tstep;
float yp = ceil(y / tstep) * tstep;
float ym = floor(y / tstep) * tstep;
float hp = curve->interpolate_baked((noise->get_noise_2d(xp, yp) + 1.0f) * 0.5f);
float hm = curve->interpolate_baked((noise->get_noise_2d(xp, yp) + 1.0f) * 0.5f);
float d = Vector2(xm, ym).distance_to(Vector2(x, y)) / Vector2(xm, ym).distance_to(Vector2(xp, yp));
return hp * d + hm * (1.0f - d);
}
}
float WorldHeightMap::get_base_height(float x, float y)
{
float n = noise->get_noise_2d(x, y);
return n;
}
void WorldHeightMap::update_all()
{
}
WorldHeightMap::WorldHeightMap()
{
}
WorldHeightMap::~WorldHeightMap()
{
}
void WorldHeightMap::_bind_methods()
{
ClassDB::bind_method(D_METHOD("get_surface_height", "x", "y"), &WorldHeightMap::get_surface_height);
ClassDB::bind_method(D_METHOD("draw_height_map", "draw", "draw_rect", "world_rect"), &WorldHeightMap::draw_height_map);
}
void WorldHeightMap::draw_height_map(Node *draw, const Rect2 &draw_rect, const Rect2 &world_rect)
{
}

View File

@@ -0,0 +1,29 @@
#ifndef WORLD_HEIGHT_MAP_H
#define WORLD_HEIGHT_MAP_H
#include <core/resource.h>
#include <core/math/random_number_generator.h>
#include <core/math/rect2.h>
#include <modules/opensimplex/open_simplex_noise.h>
#include <scene/main/node.h>
class WorldHeightMap: public Resource {
GDCLASS(WorldHeightMap, Resource);
public:
WorldHeightMap();
~WorldHeightMap();
protected:
Ref<OpenSimplexNoise> noise;
Ref<Curve> curve;
bool _set(const StringName &p_name, const Variant &p_value);
bool _get(const StringName &p_name, Variant &r_ret) const;
void _get_property_list(List<PropertyInfo> *p_list) const;
static void _bind_methods();
public:
void update_all();
float get_surface_height(float x, float y);
float get_base_height(float x, float y);
float get_base_steepness(float x, float y);
void draw_height_map(Node *draw, const Rect2 &draw_rect, const Rect2 &world_rect);
private:
int seed;
};
#endif