#include #include #include #include #include #include #include #include "road_grid.h" RoadGrid::RoadGrid() { grid_width = 16; grid_height = 16; class_sizes[SITE_EMPTY] = 10000; class_sizes[SITE_TOWN] = 100000; class_sizes[SITE_FARM] = 500000; class_sizes[SITE_FOREST] = 1000000; class_sizes[SITE_UNASSIGNED] = 2000000; } RoadGrid::~RoadGrid() { } /* TODO: constants, configuration */ Dictionary RoadGrid::build_diagram(int npatches, int center_count, int center_step, int spread, int dim) { printf("build_diagram %d %d %d %d %d\n", npatches, center_count, center_step, spread, dim); Vector centers; /* zero is always used */ centers.push_back(Vector2i(0, 0)); float sa = rnd->randf() * 2.0 * Math_PI; int i, bad = 0, cx, cp; while (centers.size() < center_count) { int center_x = CLAMP(center_step * (int)((rnd->randi() % spread) - spread / 2), -dim, dim); int center_y = CLAMP(center_step * (int)((rnd->randi() % spread) - spread / 2), -dim, dim); Vector2i c(center_x, center_y); if (centers.find(c) < 0) { centers.push_back(c); bad = 0; } else bad++; if (bad > 1000) break; } assert(centers.size() > 1); Vector points; for (cx = 0; cx < centers.size(); cx++) { float maxr = 0.0f; for (cp = 0; cp < npatches * 8; cp++) { float a = sa + sqrtf((float)cp) * 8.0f; float r = (cp == 0) ? 0.0f : 100.0f + (float)cp * 100.0f + 50.0f * rnd->randf(); float x = floor(cosf(a) * r + (float)centers[cx].x); float y = floor(sinf(a) * r + (float)centers[cx].y); if (maxr < r) maxr = r; Vector2 p(x, y); if (points.find(p) < 0) points.push_back(p); } struct cluster cst; cst.c = centers[cx]; cst.r = maxr + 50.0f; clusters.push_back(cst); } PoolVector cpoints; cpoints.resize(points.size()); memcpy(cpoints.write().ptr(), points.ptr(), points.size() * sizeof(Vector2)); Dictionary diagram = Voronoi::get_singleton()->generate_diagram(cpoints, 11); return diagram; } bool RoadGrid::segment_intersects_rect(const Vector2 &a, const Vector2 &b, const Rect2 &rect) { real_t min = 0, max = 1; const Vector2 &p_from = a; const Vector2 &p_to = b; for (int i = 0; i < 2; i++) { real_t seg_from = p_from[i]; real_t seg_to = p_to[i]; real_t box_begin = rect.position[i]; real_t box_end = box_begin + rect.size[i]; real_t cmin, cmax; if (seg_from < seg_to) { if (seg_from > box_end || seg_to < box_begin) { return false; } real_t length = seg_to - seg_from; cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0; cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1; } else { if (seg_to > box_end || seg_from < box_begin) { return false; } real_t length = seg_to - seg_from; cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0; cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1; } if (cmin > min) { min = cmin; } if (cmax < max) { max = cmax; } if (max < min) { return false; } } return true; } void RoadGrid::draw_debug(Node *drawable, int size_x, int size_y) const { int i, j; CanvasItem *ci = Object::cast_to(drawable); if (!ci) return; if (bounds.size.x <= 0.0f || bounds.size.y <= 0.0f) { printf("zero bounds %f %f\n", bounds.size.x, bounds.size.y); return; } for (i = 0; i < map_sites.size(); i++) { Vector2 a = (map_sites[i].pos - bounds.position) * Vector2(size_x, size_y) / bounds.size; ci->draw_circle(a, 4.0f, Color(0.0f, 0.5f, 0.5f, 1.0f)); } for (i = 0; i < map_hedges.size(); i++) { Vector2 xa = diagram_vertices[map_hedges[i]->a]; Vector2 xb = diagram_vertices[map_hedges[i]->b]; Vector2 a = (xa - bounds.position) * Vector2(size_x, size_y) / bounds.size; Vector2 b = (xb - bounds.position) * Vector2(size_x, size_y) / bounds.size; ci->draw_line(a, b, Color(0.0f, 0.7f, 0.7f, 1.0f), 3.0f, true); } Rect2i g = rect_to_grid(bounds); for (i = g.position.y - 1; i < g.position.y + g.size.y + 1; i++) { for (j = g.position.x - 1; j < g.position.x + g.size.x + 1; j++) { if (hedge_grid.has(j) && hedge_grid[j].has(i)) { List items = hedge_grid[j][i]; List::Element *e; for (e = items.front(); e; e = e->next()) { struct half_edge *he = e->get(); assert(he->a >= 0); assert(he->b >= 0); assert(he->a != he->b); assert(he->site >= 0); Vector2 xa = diagram_vertices[he->a]; Vector2 xb = diagram_vertices[he->b]; const struct map_site *site = &map_sites[he->site]; Vector2 pos = (site->pos - bounds.position) * Vector2(size_x, size_y) / bounds.size; ci->draw_circle(pos, 3.0f, Color(0.2f, 0.2f, 0.5f, 1.0f)); Vector2 a = (xa - bounds.position) * Vector2(size_x, size_y) / bounds.size; Vector2 b = (xb - bounds.position) * Vector2(size_x, size_y) / bounds.size; ci->draw_line(a, b, Color(0.2f, 0.2f, 0.7f, 1.0f), 2.0f, true); } } } } } void RoadGrid::index_site(struct map_site *site) { int i; site->vertices_ind.resize(site->vertices.size()); site->polygon_ind.resize(site->polygon.size()); /* slow as fuck */ for (i = 0; i < site->vertices.size(); i++) { Vector2 v = site->vertices[i].snapped(Vector2(2.0f, 2.0f)); int idx = diagram_vertices.find(v); if (idx < 0) { idx = diagram_vertices.size(); diagram_vertices.push_back(v); } site->vertices_ind.write[i] = idx; } for (i = 0; i < site->polygon.size(); i++) { Vector2 v = site->polygon[i].snapped(Vector2(2.0f, 2.0f)); int idx = diagram_vertices.find(v); if (idx < 0) { idx = diagram_vertices.size(); diagram_vertices.push_back(v); } site->polygon_ind.write[i] = idx; } site->hedges.resize(site->polygon.size()); int count = 0; for (i = 0; i < site->polygon.size(); i++) { int idx1 = site->polygon_ind[i]; int idx2 = site->polygon_ind[(i + 1) % site->polygon.size()]; if (idx1 == idx2) continue; struct half_edge he; he.a = idx1; he.b = idx2; he.site = site->index; /* use length to decide */ he.depth = 6.0f; he.length = diagram_vertices[idx1].distance_to(diagram_vertices[idx2]); site->hedges.write[count++] = he; } site->hedges.resize(count); } void RoadGrid::process_diagram(const Dictionary &diagram) { const Array &sites = diagram["sites"]; int i, j; map_sites.resize(sites.size()); int hedge_count = 0, hedge_idx; printf("start processing sites\n"); for (i = 0; i < sites.size(); i++) { struct map_site site; const Dictionary &site_data = sites[i]; const Array &graphedges = site_data["graphedges"]; printf("processing site: %d\n", i); site.graphedges.resize(graphedges.size()); for (j = 0; j < graphedges.size(); j++) { const Dictionary &ge_data = graphedges[j]; struct graphedge ge; ge.a = ge_data["a"]; ge.b = ge_data["b"]; ge.edge = ge_data["edge"]; site.graphedges.write[j] = ge; } site.index = site_data["index"]; site.pos = site_data["pos"]; site.polygon = site_data["polygon"]; site.vertices = site_data["vertices"]; site.site_type = SITE_UNASSIGNED; site.cluster = -1; index_site(&site); hedge_count += site.hedges.size(); map_sites.write[i] = site; } printf("processing sites done\n"); /* Fill global half edges array and put in grid */ printf("processing %d half edges\n", hedge_count); map_hedges.resize(hedge_count); hedge_idx = 0; for (i = 0; i < map_sites.size(); i++) { for (j = 0; j < map_sites[i].hedges.size(); j++) { /* bad bad constness */ struct half_edge *hedge = &map_sites.write[i].hedges.write[j]; map_hedges.write[hedge_idx] = hedge; add_hedge_to_grid(hedge); hedge_idx++; } } printf("processing half edges done\n"); classify_sites(); printf("processing done, sites count: %d\n", map_sites.size()); } void RoadGrid::build(Ref curve, Ref noise) { rnd.instance(); rnd->randomize(); printf("build_diagram\n"); // Dictionary diagram = build_diagram(8, 2 + (rnd->randi() % 2), 100, 100, 50); Dictionary diagram = build_diagram(8, 2, 100, 100, 500); printf("build_diagram done\n"); printf("process_diagram\n"); process_diagram(diagram); printf("process_diagram done\n"); printf("%d %d\n", curve.is_valid(), noise.is_valid()); assert(curve.is_valid() && noise.is_valid()); int i, j; if (curve.is_valid() && noise.is_valid()) { printf("building 3rd dimention\n"); diagram_vertex_heights.resize(diagram_vertices.size()); for (i = 0; i < diagram_vertices.size(); i++) { float n = noise->get_noise_2dv(diagram_vertices[i]); float t = (n + 1.0f) * 0.5f; float d = MAX(1.0f, curve->interpolate_baked(t)); d = CLAMP(d, 1.0f, 30.0f); diagram_vertex_heights.write[i] = d; } for (j = 0; j < 3; j++) { for (i = 0; i < map_hedges.size(); i++) { int x1 = map_hedges[i]->a; int x2 = map_hedges[i]->b; float xd = map_hedges[i]->length; float dh = fabsf(diagram_vertex_heights[x2] - diagram_vertex_heights[x1]); if (fabsf(dh / xd) > 0.01f) diagram_vertex_heights.write[x2] = diagram_vertex_heights[x1] + dh / fabsf(dh) * 0.01f * xd; } #if 0 for (i = 0; i < diagram_vertices.size(); i++) diagram_vertex_heights.write[i] = Math::stepify(diagram_vertex_heights.write[i], 4.0f); for (i = 0; i < diagram_vertices.size(); i++) diagram_vertex_heights.write[i] = 2.0; #endif } printf("building 3rd dimention done\n"); } } Vector2 RoadGrid::get_influence(int x, int y, float radius) const { int rd = (int)(radius / grid_width) + 1; List hlist; List::Element *e; int i = 0, j = 0; for (i = -rd; i < rd + 1; i++) for (j = -rd; j < rd + 1; j++) { List tmp; if (hedge_grid.has(x / grid_width + i) && hedge_grid[x / grid_width + i].has(y / grid_height + j)) { tmp = hedge_grid[x / grid_width + i][y / grid_height + j]; for (e = tmp.front(); e; e = e->next()) { struct half_edge *d = e->get(); hlist.push_back(d); } } } if (hlist.size() == 0) return Vector2(); for (e = hlist.front(); e; e = e->next()) { struct half_edge *he = e->get(); Vector2 a = diagram_vertices[he->a]; Vector2 b = diagram_vertices[he->b]; Vector2 p(x, y); Vector2 seg[] = {a, b}; Vector2 pt = Geometry::get_closest_point_to_segment_2d(p, seg); float d = pt.distance_squared_to(p); if (d < radius * radius) { Vector2 ret; ret.x = 1.0f; assert(diagram_vertex_heights.size() > he->a); assert(diagram_vertex_heights.size() > he->b); float h1 = diagram_vertex_heights[he->a]; float h2 = diagram_vertex_heights[he->b]; float l = he->length; assert(l > 0.0f); float m1 = pt.distance_to(a) / l; float m2 = CLAMP(1.0f - m1, 0.0f, 1.0f); float h = h1 * (1.0f - m1) + h2 * (1.0f - m2); ret.y = h - 2.5f; return ret; } } return Vector2(); } void RoadGrid::_bind_methods() { ClassDB::bind_method(D_METHOD("draw_debug", "drawable", "size_x", "size_y"), &RoadGrid::draw_debug); ClassDB::bind_method(D_METHOD("get_influence", "x", "y", "radius"), &RoadGrid::get_influence); ClassDB::bind_method(D_METHOD("build", "curve", "noise"), &RoadGrid::build); }