Files
academy2/modules/world/road_grid.cpp

332 lines
10 KiB
C++

#include <cassert>
#include <cmath>
#include <core/math/geometry.h>
#include <core/resource.h>
#include <scene/2d/canvas_item.h>
#include <modules/voronoi/voronoi.h>
#include <modules/opensimplex/open_simplex_noise.h>
#include "road_grid.h"
RoadGrid::RoadGrid()
{
grid_width = 16;
grid_height = 16;
class_sizes[SITE_EMPTY] = 10000;
class_sizes[SITE_TOWN] = 100000;
class_sizes[SITE_FARM] = 500000;
class_sizes[SITE_FOREST] = 1000000;
class_sizes[SITE_UNASSIGNED] = 2000000;
}
RoadGrid::~RoadGrid()
{
}
/* TODO: constants, configuration */
Dictionary RoadGrid::build_diagram(int npatches, int center_count, int center_step, int spread, int dim)
{
printf("build_diagram %d %d %d %d %d\n", npatches, center_count, center_step, spread, dim);
Vector<Vector2i> centers;
/* zero is always used */
centers.push_back(Vector2i(0, 0));
float sa = rnd->randf() * 2.0 * Math_PI;
int i, bad = 0, cx, cp;
while (centers.size() < center_count) {
int center_x = CLAMP(center_step * (int)((rnd->randi() % spread) - spread / 2), -dim, dim);
int center_y = CLAMP(center_step * (int)((rnd->randi() % spread) - spread / 2), -dim, dim);
Vector2i c(center_x, center_y);
if (centers.find(c) < 0) {
centers.push_back(c);
bad = 0;
} else
bad++;
if (bad > 1000)
break;
}
assert(centers.size() > 1);
Vector<Vector2> points;
for (cx = 0; cx < centers.size(); cx++) {
float maxr = 0.0f;
for (cp = 0; cp < npatches * 8; cp++) {
float a = sa + sqrtf((float)cp) * 8.0f;
float r = (cp == 0) ? 0.0f : 100.0f + (float)cp * 100.0f + 50.0f * rnd->randf();
float x = floor(cosf(a) * r + (float)centers[cx].x);
float y = floor(sinf(a) * r + (float)centers[cx].y);
if (maxr < r)
maxr = r;
Vector2 p(x, y);
if (points.find(p) < 0)
points.push_back(p);
}
struct cluster cst;
cst.c = centers[cx];
cst.r = maxr + 50.0f;
clusters.push_back(cst);
}
PoolVector<Vector2> cpoints;
cpoints.resize(points.size());
memcpy(cpoints.write().ptr(), points.ptr(), points.size() * sizeof(Vector2));
Dictionary diagram = Voronoi::get_singleton()->generate_diagram(cpoints, 11);
return diagram;
}
bool RoadGrid::segment_intersects_rect(const Vector2 &a, const Vector2 &b, const Rect2 &rect)
{
real_t min = 0, max = 1;
const Vector2 &p_from = a;
const Vector2 &p_to = b;
for (int i = 0; i < 2; i++) {
real_t seg_from = p_from[i];
real_t seg_to = p_to[i];
real_t box_begin = rect.position[i];
real_t box_end = box_begin + rect.size[i];
real_t cmin, cmax;
if (seg_from < seg_to) {
if (seg_from > box_end || seg_to < box_begin) {
return false;
}
real_t length = seg_to - seg_from;
cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0;
cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1;
} else {
if (seg_to > box_end || seg_from < box_begin) {
return false;
}
real_t length = seg_to - seg_from;
cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0;
cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1;
}
if (cmin > min) {
min = cmin;
}
if (cmax < max) {
max = cmax;
}
if (max < min) {
return false;
}
}
return true;
}
void RoadGrid::draw_debug(Node *drawable, int size_x, int size_y) const
{
int i, j;
CanvasItem *ci = Object::cast_to<CanvasItem>(drawable);
if (!ci)
return;
if (bounds.size.x <= 0.0f || bounds.size.y <= 0.0f) {
printf("zero bounds %f %f\n", bounds.size.x, bounds.size.y);
return;
}
for (i = 0; i < map_sites.size(); i++) {
Vector2 a = (map_sites[i].pos - bounds.position) * Vector2(size_x, size_y) / bounds.size;
ci->draw_circle(a, 4.0f, Color(0.0f, 0.5f, 0.5f, 1.0f));
}
for (i = 0; i < map_hedges.size(); i++) {
Vector2 xa = diagram_vertices[map_hedges[i]->a];
Vector2 xb = diagram_vertices[map_hedges[i]->b];
Vector2 a = (xa - bounds.position) * Vector2(size_x, size_y) / bounds.size;
Vector2 b = (xb - bounds.position) * Vector2(size_x, size_y) / bounds.size;
ci->draw_line(a, b, Color(0.0f, 0.7f, 0.7f, 1.0f), 3.0f, true);
}
Rect2i g = rect_to_grid(bounds);
for (i = g.position.y - 1; i < g.position.y + g.size.y + 1; i++) {
for (j = g.position.x - 1; j < g.position.x + g.size.x + 1; j++) {
if (hedge_grid.has(j) && hedge_grid[j].has(i)) {
List<struct half_edge *> items = hedge_grid[j][i];
List<struct half_edge *>::Element *e;
for (e = items.front(); e; e = e->next()) {
struct half_edge *he = e->get();
assert(he->a >= 0);
assert(he->b >= 0);
assert(he->a != he->b);
assert(he->site >= 0);
Vector2 xa = diagram_vertices[he->a];
Vector2 xb = diagram_vertices[he->b];
const struct map_site *site = &map_sites[he->site];
Vector2 pos = (site->pos - bounds.position) * Vector2(size_x, size_y) / bounds.size;
ci->draw_circle(pos, 3.0f, Color(0.2f, 0.2f, 0.5f, 1.0f));
Vector2 a = (xa - bounds.position) * Vector2(size_x, size_y) / bounds.size;
Vector2 b = (xb - bounds.position) * Vector2(size_x, size_y) / bounds.size;
ci->draw_line(a, b, Color(0.2f, 0.2f, 0.7f, 1.0f), 2.0f, true);
}
}
}
}
}
void RoadGrid::index_site(struct map_site *site)
{
int i;
site->vertices_ind.resize(site->vertices.size());
site->polygon_ind.resize(site->polygon.size());
/* slow as fuck */
for (i = 0; i < site->vertices.size(); i++) {
int idx = diagram_vertices.find(site->vertices[i]);
if (idx < 0) {
idx = diagram_vertices.size();
diagram_vertices.push_back(site->vertices[i]);
}
site->vertices_ind.write[i] = idx;
}
for (i = 0; i < site->polygon.size(); i++) {
int idx = diagram_vertices.find(site->polygon[i]);
if (idx < 0) {
idx = diagram_vertices.size();
diagram_vertices.push_back(site->polygon[i]);
}
site->polygon_ind.write[i] = idx;
}
site->hedges.resize(site->polygon.size());
for (i = 0; i < site->polygon.size(); i++) {
int idx1 = site->polygon_ind[i];
int idx2 = site->polygon_ind[(i + 1) % site->polygon.size()];
struct half_edge he;
he.a = idx1;
he.b = idx2;
he.site = site->index;
/* use length to decide */
he.depth = 6.0f;
he.length = diagram_vertices[idx1].distance_to(diagram_vertices[idx2]);
site->hedges.write[i] = he;
}
}
void RoadGrid::process_diagram(const Dictionary &diagram)
{
const Array &sites = diagram["sites"];
int i, j;
map_sites.resize(sites.size());
int hedge_count = 0, hedge_idx;
printf("start processing sites\n");
for (i = 0; i < sites.size(); i++) {
struct map_site site;
const Dictionary &site_data = sites[i];
const Array &graphedges = site_data["graphedges"];
printf("processing site: %d\n", i);
site.graphedges.resize(graphedges.size());
for (j = 0; j < graphedges.size(); j++) {
const Dictionary &ge_data = graphedges[j];
struct graphedge ge;
ge.a = ge_data["a"];
ge.b = ge_data["b"];
ge.edge = ge_data["edge"];
site.graphedges.write[j] = ge;
}
site.index = site_data["index"];
site.pos = site_data["pos"];
site.polygon = site_data["polygon"];
site.vertices = site_data["vertices"];
site.site_type = SITE_UNASSIGNED;
site.cluster = -1;
index_site(&site);
hedge_count += site.hedges.size();
map_sites.write[i] = site;
}
printf("processing sites done\n");
/* Fill global half edges array and put in grid */
printf("processing %d half edges\n", hedge_count);
map_hedges.resize(hedge_count);
hedge_idx = 0;
for (i = 0; i < map_sites.size(); i++) {
for (j = 0; j < map_sites[i].hedges.size(); j++) {
/* bad bad constness */
struct half_edge *hedge = &map_sites.write[i].hedges.write[j];
map_hedges.write[hedge_idx] = hedge;
add_hedge_to_grid(hedge);
hedge_idx++;
}
}
printf("processing half edges done\n");
classify_sites();
printf("processing done, sites count: %d\n", map_sites.size());
}
void RoadGrid::build(Ref<Curve> curve, Ref<OpenSimplexNoise> noise)
{
rnd.instance();
rnd->randomize();
printf("build_diagram\n");
// Dictionary diagram = build_diagram(8, 2 + (rnd->randi() % 2), 100, 100, 50);
Dictionary diagram = build_diagram(8, 2, 100, 100, 30);
printf("build_diagram done\n");
printf("process_diagram\n");
process_diagram(diagram);
printf("process_diagram done\n");
printf("%d %d\n", curve.is_valid(), noise.is_valid());
assert(curve.is_valid() && noise.is_valid());
int i;
if (curve.is_valid() && noise.is_valid()) {
printf("building 3rd dimention\n");
diagram_vertex_heights.resize(diagram_vertices.size());
for (i = 0; i < diagram_vertices.size(); i++) {
float n = noise->get_noise_2dv(diagram_vertices[i]);
float t = (n + 1.0f) * 0.5f;
float d = MAX(1.0f, curve->interpolate_baked(t));
diagram_vertex_heights.write[i] = d;
}
for (i = 0; i < map_hedges.size(); i++) {
int x1 = map_hedges[i]->a;
int x2 = map_hedges[i]->b;
float xd = diagram_vertices[x1].distance_squared_to(diagram_vertices[x2]);
float dh = fabsf(diagram_vertex_heights[x2] - diagram_vertex_heights[x1]);
if (fabsf(dh / xd) > 0.02f)
diagram_vertex_heights.write[x2] = diagram_vertex_heights[x1] + dh / fabsf(dh) * 0.02f * xd;
}
printf("building 3rd dimention done\n");
}
}
Vector2 RoadGrid::get_influence(int x, int y) const
{
static int mind = 1000000;
static int maxd = 0;
List<struct half_edge *> hlist;
if (hedge_grid.has(x / grid_width) && hedge_grid[x / grid_width].has(y / grid_height))
hlist = hedge_grid[x / grid_width][y / grid_height];
if (hlist.size() == 0)
return Vector2();
List<struct half_edge *>::Element *e;
for (e = hlist.front(); e; e = e->next()) {
struct half_edge *he = e->get();
Vector2 a = diagram_vertices[he->a];
Vector2 b = diagram_vertices[he->b];
Vector2 p(x, y);
Vector2 seg[] = {a, b};
Vector2 pt = Geometry::get_closest_point_to_segment_2d(p, seg);
float d = pt.distance_squared_to(p);
if (d < MAX(96.0f * 96.0f, he->depth * he->depth) + 96.0f * 96.0f) {
Vector2 ret;
ret.x = 1.0f;
assert(diagram_vertex_heights.size() > he->a);
assert(diagram_vertex_heights.size() > he->b);
float h1 = diagram_vertex_heights[he->a];
float h2 = diagram_vertex_heights[he->b];
float l = he->length;
assert(l > 0.0f);
float m1 = pt.distance_to(a) / l;
float m2 = CLAMP(1.0f - m1, 0.0f, 1.0f);
float h = h1 * (1.0f - m1) + h2 * (1.0f - m2);
ret.y = h - 0.5f;
return ret;
}
}
return Vector2();
}
void RoadGrid::_bind_methods()
{
ClassDB::bind_method(D_METHOD("draw_debug", "drawable", "size_x", "size_y"), &RoadGrid::draw_debug);
ClassDB::bind_method(D_METHOD("get_influence", "x", "y"), &RoadGrid::get_influence);
ClassDB::bind_method(D_METHOD("build", "curve", "noise"), &RoadGrid::build);
}