Updates
This commit is contained in:
164
fftw-3.3.10/genfft/number.ml
Normal file
164
fftw-3.3.10/genfft/number.ml
Normal file
@@ -0,0 +1,164 @@
|
||||
(*
|
||||
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
|
||||
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||||
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*
|
||||
*)
|
||||
|
||||
(* The generator keeps track of numeric constants in symbolic
|
||||
expressions using the abstract number type, defined in this file.
|
||||
|
||||
Our implementation of the number type uses arbitrary-precision
|
||||
arithmetic from the built-in Num package in order to maintain an
|
||||
accurate representation of constants. This allows us to output
|
||||
constants with many decimal places in the generated C code,
|
||||
ensuring that we will take advantage of the full precision
|
||||
available on current and future machines.
|
||||
|
||||
Note that we have to write our own routine to compute roots of
|
||||
unity, since the Num package only supplies simple arithmetic. The
|
||||
arbitrary-precision operations in Num look like the normal
|
||||
operations except that they have an appended slash (e.g. +/ -/ */
|
||||
// etcetera). *)
|
||||
|
||||
open Num
|
||||
|
||||
type number = N of num
|
||||
|
||||
let makeNum n = N n
|
||||
|
||||
(* decimal digits of precision to maintain internally, and to print out: *)
|
||||
let precision = 50
|
||||
let print_precision = 45
|
||||
|
||||
let inveps = (Int 10) **/ (Int precision)
|
||||
let epsilon = (Int 1) // inveps
|
||||
|
||||
let pinveps = (Int 10) **/ (Int print_precision)
|
||||
let pepsilon = (Int 1) // pinveps
|
||||
|
||||
let round x = epsilon */ (round_num (x */ inveps))
|
||||
|
||||
let of_int n = N (Int n)
|
||||
let zero = of_int 0
|
||||
let one = of_int 1
|
||||
let two = of_int 2
|
||||
let mone = of_int (-1)
|
||||
|
||||
(* comparison predicate for real numbers *)
|
||||
let equal (N x) (N y) = (* use both relative and absolute error *)
|
||||
let absdiff = abs_num (x -/ y) in
|
||||
absdiff <=/ pepsilon ||
|
||||
absdiff <=/ pepsilon */ (abs_num x +/ abs_num y)
|
||||
|
||||
let is_zero = equal zero
|
||||
let is_one = equal one
|
||||
let is_mone = equal mone
|
||||
let is_two = equal two
|
||||
|
||||
|
||||
(* Note that, in the following computations, it is important to round
|
||||
to precision epsilon after each operation. Otherwise, since the
|
||||
Num package uses exact rational arithmetic, the number of digits
|
||||
quickly blows up. *)
|
||||
let mul (N a) (N b) = makeNum (round (a */ b))
|
||||
let div (N a) (N b) = makeNum (round (a // b))
|
||||
let add (N a) (N b) = makeNum (round (a +/ b))
|
||||
let sub (N a) (N b) = makeNum (round (a -/ b))
|
||||
|
||||
let negative (N a) = (a </ (Int 0))
|
||||
let negate (N a) = makeNum (minus_num a)
|
||||
|
||||
let greater a b = negative (sub b a)
|
||||
|
||||
let epsilonsq = epsilon */ epsilon
|
||||
let epsilonsq2 = (Int 100) */ epsilonsq
|
||||
|
||||
let sqr a = a */ a
|
||||
let almost_equal (N a) (N b) = (sqr (a -/ b)) <=/ epsilonsq2
|
||||
|
||||
(* find square root by Newton's method *)
|
||||
let sqrt a =
|
||||
let rec sqrt_iter guess =
|
||||
let newguess = div (add guess (div a guess)) two in
|
||||
if (almost_equal newguess guess) then newguess
|
||||
else sqrt_iter newguess
|
||||
in sqrt_iter (div a two)
|
||||
|
||||
let csub (xr, xi) (yr, yi) = (round (xr -/ yr), round (xi -/ yi))
|
||||
let cdiv (xr, xi) r = (round (xr // r), round (xi // r))
|
||||
let cmul (xr, xi) (yr, yi) = (round (xr */ yr -/ xi */ yi),
|
||||
round (xr */ yi +/ xi */ yr))
|
||||
let csqr (xr, xi) = (round (xr */ xr -/ xi */ xi), round ((Int 2) */ xr */ xi))
|
||||
let cabssq (xr, xi) = xr */ xr +/ xi */ xi
|
||||
let cconj (xr, xi) = (xr, minus_num xi)
|
||||
let cinv x = cdiv (cconj x) (cabssq x)
|
||||
|
||||
let almost_equal_cnum (xr, xi) (yr, yi) =
|
||||
(cabssq (xr -/ yr,xi -/ yi)) <=/ epsilonsq2
|
||||
|
||||
(* Put a complex number to an integer power by repeated squaring: *)
|
||||
let rec ipow_cnum x n =
|
||||
if (n == 0) then
|
||||
(Int 1, Int 0)
|
||||
else if (n < 0) then
|
||||
cinv (ipow_cnum x (- n))
|
||||
else if (n mod 2 == 0) then
|
||||
ipow_cnum (csqr x) (n / 2)
|
||||
else
|
||||
cmul x (ipow_cnum x (n - 1))
|
||||
|
||||
let twopi = 6.28318530717958647692528676655900576839433879875021164194989
|
||||
|
||||
(* Find the nth (complex) primitive root of unity by Newton's method: *)
|
||||
let primitive_root_of_unity n =
|
||||
let rec root_iter guess =
|
||||
let newguess = csub guess (cdiv (csub guess
|
||||
(ipow_cnum guess (1 - n)))
|
||||
(Int n)) in
|
||||
if (almost_equal_cnum guess newguess) then newguess
|
||||
else root_iter newguess
|
||||
in let float_to_num f = (Int (truncate (f *. 1.0e9))) // (Int 1000000000)
|
||||
in root_iter (float_to_num (cos (twopi /. (float n))),
|
||||
float_to_num (sin (twopi /. (float n))))
|
||||
|
||||
let cexp n i =
|
||||
if ((i mod n) == 0) then
|
||||
(one,zero)
|
||||
else
|
||||
let (n2,i2) = Util.lowest_terms n i
|
||||
in let (c,s) = ipow_cnum (primitive_root_of_unity n2) i2
|
||||
in (makeNum c, makeNum s)
|
||||
|
||||
let to_konst (N n) =
|
||||
let f = float_of_num n in
|
||||
let f' = if f < 0.0 then f *. (-1.0) else f in
|
||||
let f2 = if (f' >= 1.0) then (f' -. (float (truncate f'))) else f'
|
||||
in let q = string_of_int (truncate(f2 *. 1.0E9))
|
||||
in let r = "0000000000" ^ q
|
||||
in let l = String.length r
|
||||
in let prefix = if (f < 0.0) then "KN" else "KP" in
|
||||
if (f' >= 1.0) then
|
||||
(prefix ^ (string_of_int (truncate f')) ^ "_" ^
|
||||
(String.sub r (l - 9) 9))
|
||||
else
|
||||
(prefix ^ (String.sub r (l - 9) 9))
|
||||
|
||||
let to_string (N n) = approx_num_fix print_precision n
|
||||
|
||||
let to_float (N n) = float_of_num n
|
||||
|
||||
Reference in New Issue
Block a user