Move the QtMultimedia spectrum demo to QtMultimediaKit
Change-Id: I60d7897eb84dfbe2ce5af5adeb23b33270aa7d7c Reviewed-on: http://codereview.qt.nokia.com/1483 Reviewed-by: Jonas Rabbe <jonas.rabbe@nokia.com>
This commit is contained in:
committed by
Qt by Nokia
parent
1d82a1e1b4
commit
e4f42348f1
916
examples/spectrum/3rdparty/fftreal/FFTReal.hpp
vendored
Normal file
916
examples/spectrum/3rdparty/fftreal/FFTReal.hpp
vendored
Normal file
@@ -0,0 +1,916 @@
|
||||
/*****************************************************************************
|
||||
|
||||
FFTReal.hpp
|
||||
Copyright (c) 2005 Laurent de Soras
|
||||
|
||||
--- Legal stuff ---
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
*Tab=3***********************************************************************/
|
||||
|
||||
|
||||
|
||||
#if defined (FFTReal_CURRENT_CODEHEADER)
|
||||
#error Recursive inclusion of FFTReal code header.
|
||||
#endif
|
||||
#define FFTReal_CURRENT_CODEHEADER
|
||||
|
||||
#if ! defined (FFTReal_CODEHEADER_INCLUDED)
|
||||
#define FFTReal_CODEHEADER_INCLUDED
|
||||
|
||||
|
||||
|
||||
/*\\\ INCLUDE FILES \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
|
||||
|
||||
|
||||
static inline bool FFTReal_is_pow2 (long x)
|
||||
{
|
||||
assert (x > 0);
|
||||
|
||||
return ((x & -x) == x);
|
||||
}
|
||||
|
||||
|
||||
|
||||
static inline int FFTReal_get_next_pow2 (long x)
|
||||
{
|
||||
--x;
|
||||
|
||||
int p = 0;
|
||||
while ((x & ~0xFFFFL) != 0)
|
||||
{
|
||||
p += 16;
|
||||
x >>= 16;
|
||||
}
|
||||
while ((x & ~0xFL) != 0)
|
||||
{
|
||||
p += 4;
|
||||
x >>= 4;
|
||||
}
|
||||
while (x > 0)
|
||||
{
|
||||
++p;
|
||||
x >>= 1;
|
||||
}
|
||||
|
||||
return (p);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*\\\ PUBLIC \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/
|
||||
|
||||
|
||||
|
||||
/*
|
||||
==============================================================================
|
||||
Name: ctor
|
||||
Input parameters:
|
||||
- length: length of the array on which we want to do a FFT. Range: power of
|
||||
2 only, > 0.
|
||||
Throws: std::bad_alloc
|
||||
==============================================================================
|
||||
*/
|
||||
|
||||
template <class DT>
|
||||
FFTReal <DT>::FFTReal (long length)
|
||||
: _length (length)
|
||||
, _nbr_bits (FFTReal_get_next_pow2 (length))
|
||||
, _br_lut ()
|
||||
, _trigo_lut ()
|
||||
, _buffer (length)
|
||||
, _trigo_osc ()
|
||||
{
|
||||
assert (FFTReal_is_pow2 (length));
|
||||
assert (_nbr_bits <= MAX_BIT_DEPTH);
|
||||
|
||||
init_br_lut ();
|
||||
init_trigo_lut ();
|
||||
init_trigo_osc ();
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
==============================================================================
|
||||
Name: get_length
|
||||
Description:
|
||||
Returns the number of points processed by this FFT object.
|
||||
Returns: The number of points, power of 2, > 0.
|
||||
Throws: Nothing
|
||||
==============================================================================
|
||||
*/
|
||||
|
||||
template <class DT>
|
||||
long FFTReal <DT>::get_length () const
|
||||
{
|
||||
return (_length);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
==============================================================================
|
||||
Name: do_fft
|
||||
Description:
|
||||
Compute the FFT of the array.
|
||||
Input parameters:
|
||||
- x: pointer on the source array (time).
|
||||
Output parameters:
|
||||
- f: pointer on the destination array (frequencies).
|
||||
f [0...length(x)/2] = real values,
|
||||
f [length(x)/2+1...length(x)-1] = negative imaginary values of
|
||||
coefficents 1...length(x)/2-1.
|
||||
Throws: Nothing
|
||||
==============================================================================
|
||||
*/
|
||||
|
||||
template <class DT>
|
||||
void FFTReal <DT>::do_fft (DataType f [], const DataType x []) const
|
||||
{
|
||||
assert (f != 0);
|
||||
assert (f != use_buffer ());
|
||||
assert (x != 0);
|
||||
assert (x != use_buffer ());
|
||||
assert (x != f);
|
||||
|
||||
// General case
|
||||
if (_nbr_bits > 2)
|
||||
{
|
||||
compute_fft_general (f, x);
|
||||
}
|
||||
|
||||
// 4-point FFT
|
||||
else if (_nbr_bits == 2)
|
||||
{
|
||||
f [1] = x [0] - x [2];
|
||||
f [3] = x [1] - x [3];
|
||||
|
||||
const DataType b_0 = x [0] + x [2];
|
||||
const DataType b_2 = x [1] + x [3];
|
||||
|
||||
f [0] = b_0 + b_2;
|
||||
f [2] = b_0 - b_2;
|
||||
}
|
||||
|
||||
// 2-point FFT
|
||||
else if (_nbr_bits == 1)
|
||||
{
|
||||
f [0] = x [0] + x [1];
|
||||
f [1] = x [0] - x [1];
|
||||
}
|
||||
|
||||
// 1-point FFT
|
||||
else
|
||||
{
|
||||
f [0] = x [0];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
==============================================================================
|
||||
Name: do_ifft
|
||||
Description:
|
||||
Compute the inverse FFT of the array. Note that data must be post-scaled:
|
||||
IFFT (FFT (x)) = x * length (x).
|
||||
Input parameters:
|
||||
- f: pointer on the source array (frequencies).
|
||||
f [0...length(x)/2] = real values
|
||||
f [length(x)/2+1...length(x)-1] = negative imaginary values of
|
||||
coefficents 1...length(x)/2-1.
|
||||
Output parameters:
|
||||
- x: pointer on the destination array (time).
|
||||
Throws: Nothing
|
||||
==============================================================================
|
||||
*/
|
||||
|
||||
template <class DT>
|
||||
void FFTReal <DT>::do_ifft (const DataType f [], DataType x []) const
|
||||
{
|
||||
assert (f != 0);
|
||||
assert (f != use_buffer ());
|
||||
assert (x != 0);
|
||||
assert (x != use_buffer ());
|
||||
assert (x != f);
|
||||
|
||||
// General case
|
||||
if (_nbr_bits > 2)
|
||||
{
|
||||
compute_ifft_general (f, x);
|
||||
}
|
||||
|
||||
// 4-point IFFT
|
||||
else if (_nbr_bits == 2)
|
||||
{
|
||||
const DataType b_0 = f [0] + f [2];
|
||||
const DataType b_2 = f [0] - f [2];
|
||||
|
||||
x [0] = b_0 + f [1] * 2;
|
||||
x [2] = b_0 - f [1] * 2;
|
||||
x [1] = b_2 + f [3] * 2;
|
||||
x [3] = b_2 - f [3] * 2;
|
||||
}
|
||||
|
||||
// 2-point IFFT
|
||||
else if (_nbr_bits == 1)
|
||||
{
|
||||
x [0] = f [0] + f [1];
|
||||
x [1] = f [0] - f [1];
|
||||
}
|
||||
|
||||
// 1-point IFFT
|
||||
else
|
||||
{
|
||||
x [0] = f [0];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
==============================================================================
|
||||
Name: rescale
|
||||
Description:
|
||||
Scale an array by divide each element by its length. This function should
|
||||
be called after FFT + IFFT.
|
||||
Input parameters:
|
||||
- x: pointer on array to rescale (time or frequency).
|
||||
Throws: Nothing
|
||||
==============================================================================
|
||||
*/
|
||||
|
||||
template <class DT>
|
||||
void FFTReal <DT>::rescale (DataType x []) const
|
||||
{
|
||||
const DataType mul = DataType (1.0 / _length);
|
||||
|
||||
if (_length < 4)
|
||||
{
|
||||
long i = _length - 1;
|
||||
do
|
||||
{
|
||||
x [i] *= mul;
|
||||
--i;
|
||||
}
|
||||
while (i >= 0);
|
||||
}
|
||||
|
||||
else
|
||||
{
|
||||
assert ((_length & 3) == 0);
|
||||
|
||||
// Could be optimized with SIMD instruction sets (needs alignment check)
|
||||
long i = _length - 4;
|
||||
do
|
||||
{
|
||||
x [i + 0] *= mul;
|
||||
x [i + 1] *= mul;
|
||||
x [i + 2] *= mul;
|
||||
x [i + 3] *= mul;
|
||||
i -= 4;
|
||||
}
|
||||
while (i >= 0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
==============================================================================
|
||||
Name: use_buffer
|
||||
Description:
|
||||
Access the internal buffer, whose length is the FFT one.
|
||||
Buffer content will be erased at each do_fft() / do_ifft() call!
|
||||
This buffer cannot be used as:
|
||||
- source for FFT or IFFT done with this object
|
||||
- destination for FFT or IFFT done with this object
|
||||
Returns:
|
||||
Buffer start address
|
||||
Throws: Nothing
|
||||
==============================================================================
|
||||
*/
|
||||
|
||||
template <class DT>
|
||||
typename FFTReal <DT>::DataType * FFTReal <DT>::use_buffer () const
|
||||
{
|
||||
return (&_buffer [0]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*\\\ PROTECTED \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/
|
||||
|
||||
|
||||
|
||||
/*\\\ PRIVATE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/
|
||||
|
||||
|
||||
|
||||
template <class DT>
|
||||
void FFTReal <DT>::init_br_lut ()
|
||||
{
|
||||
const long length = 1L << _nbr_bits;
|
||||
_br_lut.resize (length);
|
||||
|
||||
_br_lut [0] = 0;
|
||||
long br_index = 0;
|
||||
for (long cnt = 1; cnt < length; ++cnt)
|
||||
{
|
||||
// ++br_index (bit reversed)
|
||||
long bit = length >> 1;
|
||||
while (((br_index ^= bit) & bit) == 0)
|
||||
{
|
||||
bit >>= 1;
|
||||
}
|
||||
|
||||
_br_lut [cnt] = br_index;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class DT>
|
||||
void FFTReal <DT>::init_trigo_lut ()
|
||||
{
|
||||
using namespace std;
|
||||
|
||||
if (_nbr_bits > 3)
|
||||
{
|
||||
const long total_len = (1L << (_nbr_bits - 1)) - 4;
|
||||
_trigo_lut.resize (total_len);
|
||||
|
||||
for (int level = 3; level < _nbr_bits; ++level)
|
||||
{
|
||||
const long level_len = 1L << (level - 1);
|
||||
DataType * const level_ptr =
|
||||
&_trigo_lut [get_trigo_level_index (level)];
|
||||
const double mul = PI / (level_len << 1);
|
||||
|
||||
for (long i = 0; i < level_len; ++ i)
|
||||
{
|
||||
level_ptr [i] = static_cast <DataType> (cos (i * mul));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class DT>
|
||||
void FFTReal <DT>::init_trigo_osc ()
|
||||
{
|
||||
const int nbr_osc = _nbr_bits - TRIGO_BD_LIMIT;
|
||||
if (nbr_osc > 0)
|
||||
{
|
||||
_trigo_osc.resize (nbr_osc);
|
||||
|
||||
for (int osc_cnt = 0; osc_cnt < nbr_osc; ++osc_cnt)
|
||||
{
|
||||
OscType & osc = _trigo_osc [osc_cnt];
|
||||
|
||||
const long len = 1L << (TRIGO_BD_LIMIT + osc_cnt);
|
||||
const double mul = (0.5 * PI) / len;
|
||||
osc.set_step (mul);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class DT>
|
||||
const long * FFTReal <DT>::get_br_ptr () const
|
||||
{
|
||||
return (&_br_lut [0]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class DT>
|
||||
const typename FFTReal <DT>::DataType * FFTReal <DT>::get_trigo_ptr (int level) const
|
||||
{
|
||||
assert (level >= 3);
|
||||
|
||||
return (&_trigo_lut [get_trigo_level_index (level)]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class DT>
|
||||
long FFTReal <DT>::get_trigo_level_index (int level) const
|
||||
{
|
||||
assert (level >= 3);
|
||||
|
||||
return ((1L << (level - 1)) - 4);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Transform in several passes
|
||||
template <class DT>
|
||||
void FFTReal <DT>::compute_fft_general (DataType f [], const DataType x []) const
|
||||
{
|
||||
assert (f != 0);
|
||||
assert (f != use_buffer ());
|
||||
assert (x != 0);
|
||||
assert (x != use_buffer ());
|
||||
assert (x != f);
|
||||
|
||||
DataType * sf;
|
||||
DataType * df;
|
||||
|
||||
if ((_nbr_bits & 1) != 0)
|
||||
{
|
||||
df = use_buffer ();
|
||||
sf = f;
|
||||
}
|
||||
else
|
||||
{
|
||||
df = f;
|
||||
sf = use_buffer ();
|
||||
}
|
||||
|
||||
compute_direct_pass_1_2 (df, x);
|
||||
compute_direct_pass_3 (sf, df);
|
||||
|
||||
for (int pass = 3; pass < _nbr_bits; ++ pass)
|
||||
{
|
||||
compute_direct_pass_n (df, sf, pass);
|
||||
|
||||
DataType * const temp_ptr = df;
|
||||
df = sf;
|
||||
sf = temp_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class DT>
|
||||
void FFTReal <DT>::compute_direct_pass_1_2 (DataType df [], const DataType x []) const
|
||||
{
|
||||
assert (df != 0);
|
||||
assert (x != 0);
|
||||
assert (df != x);
|
||||
|
||||
const long * const bit_rev_lut_ptr = get_br_ptr ();
|
||||
long coef_index = 0;
|
||||
do
|
||||
{
|
||||
const long rev_index_0 = bit_rev_lut_ptr [coef_index];
|
||||
const long rev_index_1 = bit_rev_lut_ptr [coef_index + 1];
|
||||
const long rev_index_2 = bit_rev_lut_ptr [coef_index + 2];
|
||||
const long rev_index_3 = bit_rev_lut_ptr [coef_index + 3];
|
||||
|
||||
DataType * const df2 = df + coef_index;
|
||||
df2 [1] = x [rev_index_0] - x [rev_index_1];
|
||||
df2 [3] = x [rev_index_2] - x [rev_index_3];
|
||||
|
||||
const DataType sf_0 = x [rev_index_0] + x [rev_index_1];
|
||||
const DataType sf_2 = x [rev_index_2] + x [rev_index_3];
|
||||
|
||||
df2 [0] = sf_0 + sf_2;
|
||||
df2 [2] = sf_0 - sf_2;
|
||||
|
||||
coef_index += 4;
|
||||
}
|
||||
while (coef_index < _length);
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class DT>
|
||||
void FFTReal <DT>::compute_direct_pass_3 (DataType df [], const DataType sf []) const
|
||||
{
|
||||
assert (df != 0);
|
||||
assert (sf != 0);
|
||||
assert (df != sf);
|
||||
|
||||
const DataType sqrt2_2 = DataType (SQRT2 * 0.5);
|
||||
long coef_index = 0;
|
||||
do
|
||||
{
|
||||
DataType v;
|
||||
|
||||
df [coef_index] = sf [coef_index] + sf [coef_index + 4];
|
||||
df [coef_index + 4] = sf [coef_index] - sf [coef_index + 4];
|
||||
df [coef_index + 2] = sf [coef_index + 2];
|
||||
df [coef_index + 6] = sf [coef_index + 6];
|
||||
|
||||
v = (sf [coef_index + 5] - sf [coef_index + 7]) * sqrt2_2;
|
||||
df [coef_index + 1] = sf [coef_index + 1] + v;
|
||||
df [coef_index + 3] = sf [coef_index + 1] - v;
|
||||
|
||||
v = (sf [coef_index + 5] + sf [coef_index + 7]) * sqrt2_2;
|
||||
df [coef_index + 5] = v + sf [coef_index + 3];
|
||||
df [coef_index + 7] = v - sf [coef_index + 3];
|
||||
|
||||
coef_index += 8;
|
||||
}
|
||||
while (coef_index < _length);
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class DT>
|
||||
void FFTReal <DT>::compute_direct_pass_n (DataType df [], const DataType sf [], int pass) const
|
||||
{
|
||||
assert (df != 0);
|
||||
assert (sf != 0);
|
||||
assert (df != sf);
|
||||
assert (pass >= 3);
|
||||
assert (pass < _nbr_bits);
|
||||
|
||||
if (pass <= TRIGO_BD_LIMIT)
|
||||
{
|
||||
compute_direct_pass_n_lut (df, sf, pass);
|
||||
}
|
||||
else
|
||||
{
|
||||
compute_direct_pass_n_osc (df, sf, pass);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class DT>
|
||||
void FFTReal <DT>::compute_direct_pass_n_lut (DataType df [], const DataType sf [], int pass) const
|
||||
{
|
||||
assert (df != 0);
|
||||
assert (sf != 0);
|
||||
assert (df != sf);
|
||||
assert (pass >= 3);
|
||||
assert (pass < _nbr_bits);
|
||||
|
||||
const long nbr_coef = 1 << pass;
|
||||
const long h_nbr_coef = nbr_coef >> 1;
|
||||
const long d_nbr_coef = nbr_coef << 1;
|
||||
long coef_index = 0;
|
||||
const DataType * const cos_ptr = get_trigo_ptr (pass);
|
||||
do
|
||||
{
|
||||
const DataType * const sf1r = sf + coef_index;
|
||||
const DataType * const sf2r = sf1r + nbr_coef;
|
||||
DataType * const dfr = df + coef_index;
|
||||
DataType * const dfi = dfr + nbr_coef;
|
||||
|
||||
// Extreme coefficients are always real
|
||||
dfr [0] = sf1r [0] + sf2r [0];
|
||||
dfi [0] = sf1r [0] - sf2r [0]; // dfr [nbr_coef] =
|
||||
dfr [h_nbr_coef] = sf1r [h_nbr_coef];
|
||||
dfi [h_nbr_coef] = sf2r [h_nbr_coef];
|
||||
|
||||
// Others are conjugate complex numbers
|
||||
const DataType * const sf1i = sf1r + h_nbr_coef;
|
||||
const DataType * const sf2i = sf1i + nbr_coef;
|
||||
for (long i = 1; i < h_nbr_coef; ++ i)
|
||||
{
|
||||
const DataType c = cos_ptr [i]; // cos (i*PI/nbr_coef);
|
||||
const DataType s = cos_ptr [h_nbr_coef - i]; // sin (i*PI/nbr_coef);
|
||||
DataType v;
|
||||
|
||||
v = sf2r [i] * c - sf2i [i] * s;
|
||||
dfr [i] = sf1r [i] + v;
|
||||
dfi [-i] = sf1r [i] - v; // dfr [nbr_coef - i] =
|
||||
|
||||
v = sf2r [i] * s + sf2i [i] * c;
|
||||
dfi [i] = v + sf1i [i];
|
||||
dfi [nbr_coef - i] = v - sf1i [i];
|
||||
}
|
||||
|
||||
coef_index += d_nbr_coef;
|
||||
}
|
||||
while (coef_index < _length);
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class DT>
|
||||
void FFTReal <DT>::compute_direct_pass_n_osc (DataType df [], const DataType sf [], int pass) const
|
||||
{
|
||||
assert (df != 0);
|
||||
assert (sf != 0);
|
||||
assert (df != sf);
|
||||
assert (pass > TRIGO_BD_LIMIT);
|
||||
assert (pass < _nbr_bits);
|
||||
|
||||
const long nbr_coef = 1 << pass;
|
||||
const long h_nbr_coef = nbr_coef >> 1;
|
||||
const long d_nbr_coef = nbr_coef << 1;
|
||||
long coef_index = 0;
|
||||
OscType & osc = _trigo_osc [pass - (TRIGO_BD_LIMIT + 1)];
|
||||
do
|
||||
{
|
||||
const DataType * const sf1r = sf + coef_index;
|
||||
const DataType * const sf2r = sf1r + nbr_coef;
|
||||
DataType * const dfr = df + coef_index;
|
||||
DataType * const dfi = dfr + nbr_coef;
|
||||
|
||||
osc.clear_buffers ();
|
||||
|
||||
// Extreme coefficients are always real
|
||||
dfr [0] = sf1r [0] + sf2r [0];
|
||||
dfi [0] = sf1r [0] - sf2r [0]; // dfr [nbr_coef] =
|
||||
dfr [h_nbr_coef] = sf1r [h_nbr_coef];
|
||||
dfi [h_nbr_coef] = sf2r [h_nbr_coef];
|
||||
|
||||
// Others are conjugate complex numbers
|
||||
const DataType * const sf1i = sf1r + h_nbr_coef;
|
||||
const DataType * const sf2i = sf1i + nbr_coef;
|
||||
for (long i = 1; i < h_nbr_coef; ++ i)
|
||||
{
|
||||
osc.step ();
|
||||
const DataType c = osc.get_cos ();
|
||||
const DataType s = osc.get_sin ();
|
||||
DataType v;
|
||||
|
||||
v = sf2r [i] * c - sf2i [i] * s;
|
||||
dfr [i] = sf1r [i] + v;
|
||||
dfi [-i] = sf1r [i] - v; // dfr [nbr_coef - i] =
|
||||
|
||||
v = sf2r [i] * s + sf2i [i] * c;
|
||||
dfi [i] = v + sf1i [i];
|
||||
dfi [nbr_coef - i] = v - sf1i [i];
|
||||
}
|
||||
|
||||
coef_index += d_nbr_coef;
|
||||
}
|
||||
while (coef_index < _length);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Transform in several pass
|
||||
template <class DT>
|
||||
void FFTReal <DT>::compute_ifft_general (const DataType f [], DataType x []) const
|
||||
{
|
||||
assert (f != 0);
|
||||
assert (f != use_buffer ());
|
||||
assert (x != 0);
|
||||
assert (x != use_buffer ());
|
||||
assert (x != f);
|
||||
|
||||
DataType * sf = const_cast <DataType *> (f);
|
||||
DataType * df;
|
||||
DataType * df_temp;
|
||||
|
||||
if (_nbr_bits & 1)
|
||||
{
|
||||
df = use_buffer ();
|
||||
df_temp = x;
|
||||
}
|
||||
else
|
||||
{
|
||||
df = x;
|
||||
df_temp = use_buffer ();
|
||||
}
|
||||
|
||||
for (int pass = _nbr_bits - 1; pass >= 3; -- pass)
|
||||
{
|
||||
compute_inverse_pass_n (df, sf, pass);
|
||||
|
||||
if (pass < _nbr_bits - 1)
|
||||
{
|
||||
DataType * const temp_ptr = df;
|
||||
df = sf;
|
||||
sf = temp_ptr;
|
||||
}
|
||||
else
|
||||
{
|
||||
sf = df;
|
||||
df = df_temp;
|
||||
}
|
||||
}
|
||||
|
||||
compute_inverse_pass_3 (df, sf);
|
||||
compute_inverse_pass_1_2 (x, df);
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class DT>
|
||||
void FFTReal <DT>::compute_inverse_pass_n (DataType df [], const DataType sf [], int pass) const
|
||||
{
|
||||
assert (df != 0);
|
||||
assert (sf != 0);
|
||||
assert (df != sf);
|
||||
assert (pass >= 3);
|
||||
assert (pass < _nbr_bits);
|
||||
|
||||
if (pass <= TRIGO_BD_LIMIT)
|
||||
{
|
||||
compute_inverse_pass_n_lut (df, sf, pass);
|
||||
}
|
||||
else
|
||||
{
|
||||
compute_inverse_pass_n_osc (df, sf, pass);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class DT>
|
||||
void FFTReal <DT>::compute_inverse_pass_n_lut (DataType df [], const DataType sf [], int pass) const
|
||||
{
|
||||
assert (df != 0);
|
||||
assert (sf != 0);
|
||||
assert (df != sf);
|
||||
assert (pass >= 3);
|
||||
assert (pass < _nbr_bits);
|
||||
|
||||
const long nbr_coef = 1 << pass;
|
||||
const long h_nbr_coef = nbr_coef >> 1;
|
||||
const long d_nbr_coef = nbr_coef << 1;
|
||||
long coef_index = 0;
|
||||
const DataType * const cos_ptr = get_trigo_ptr (pass);
|
||||
do
|
||||
{
|
||||
const DataType * const sfr = sf + coef_index;
|
||||
const DataType * const sfi = sfr + nbr_coef;
|
||||
DataType * const df1r = df + coef_index;
|
||||
DataType * const df2r = df1r + nbr_coef;
|
||||
|
||||
// Extreme coefficients are always real
|
||||
df1r [0] = sfr [0] + sfi [0]; // + sfr [nbr_coef]
|
||||
df2r [0] = sfr [0] - sfi [0]; // - sfr [nbr_coef]
|
||||
df1r [h_nbr_coef] = sfr [h_nbr_coef] * 2;
|
||||
df2r [h_nbr_coef] = sfi [h_nbr_coef] * 2;
|
||||
|
||||
// Others are conjugate complex numbers
|
||||
DataType * const df1i = df1r + h_nbr_coef;
|
||||
DataType * const df2i = df1i + nbr_coef;
|
||||
for (long i = 1; i < h_nbr_coef; ++ i)
|
||||
{
|
||||
df1r [i] = sfr [i] + sfi [-i]; // + sfr [nbr_coef - i]
|
||||
df1i [i] = sfi [i] - sfi [nbr_coef - i];
|
||||
|
||||
const DataType c = cos_ptr [i]; // cos (i*PI/nbr_coef);
|
||||
const DataType s = cos_ptr [h_nbr_coef - i]; // sin (i*PI/nbr_coef);
|
||||
const DataType vr = sfr [i] - sfi [-i]; // - sfr [nbr_coef - i]
|
||||
const DataType vi = sfi [i] + sfi [nbr_coef - i];
|
||||
|
||||
df2r [i] = vr * c + vi * s;
|
||||
df2i [i] = vi * c - vr * s;
|
||||
}
|
||||
|
||||
coef_index += d_nbr_coef;
|
||||
}
|
||||
while (coef_index < _length);
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class DT>
|
||||
void FFTReal <DT>::compute_inverse_pass_n_osc (DataType df [], const DataType sf [], int pass) const
|
||||
{
|
||||
assert (df != 0);
|
||||
assert (sf != 0);
|
||||
assert (df != sf);
|
||||
assert (pass > TRIGO_BD_LIMIT);
|
||||
assert (pass < _nbr_bits);
|
||||
|
||||
const long nbr_coef = 1 << pass;
|
||||
const long h_nbr_coef = nbr_coef >> 1;
|
||||
const long d_nbr_coef = nbr_coef << 1;
|
||||
long coef_index = 0;
|
||||
OscType & osc = _trigo_osc [pass - (TRIGO_BD_LIMIT + 1)];
|
||||
do
|
||||
{
|
||||
const DataType * const sfr = sf + coef_index;
|
||||
const DataType * const sfi = sfr + nbr_coef;
|
||||
DataType * const df1r = df + coef_index;
|
||||
DataType * const df2r = df1r + nbr_coef;
|
||||
|
||||
osc.clear_buffers ();
|
||||
|
||||
// Extreme coefficients are always real
|
||||
df1r [0] = sfr [0] + sfi [0]; // + sfr [nbr_coef]
|
||||
df2r [0] = sfr [0] - sfi [0]; // - sfr [nbr_coef]
|
||||
df1r [h_nbr_coef] = sfr [h_nbr_coef] * 2;
|
||||
df2r [h_nbr_coef] = sfi [h_nbr_coef] * 2;
|
||||
|
||||
// Others are conjugate complex numbers
|
||||
DataType * const df1i = df1r + h_nbr_coef;
|
||||
DataType * const df2i = df1i + nbr_coef;
|
||||
for (long i = 1; i < h_nbr_coef; ++ i)
|
||||
{
|
||||
df1r [i] = sfr [i] + sfi [-i]; // + sfr [nbr_coef - i]
|
||||
df1i [i] = sfi [i] - sfi [nbr_coef - i];
|
||||
|
||||
osc.step ();
|
||||
const DataType c = osc.get_cos ();
|
||||
const DataType s = osc.get_sin ();
|
||||
const DataType vr = sfr [i] - sfi [-i]; // - sfr [nbr_coef - i]
|
||||
const DataType vi = sfi [i] + sfi [nbr_coef - i];
|
||||
|
||||
df2r [i] = vr * c + vi * s;
|
||||
df2i [i] = vi * c - vr * s;
|
||||
}
|
||||
|
||||
coef_index += d_nbr_coef;
|
||||
}
|
||||
while (coef_index < _length);
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class DT>
|
||||
void FFTReal <DT>::compute_inverse_pass_3 (DataType df [], const DataType sf []) const
|
||||
{
|
||||
assert (df != 0);
|
||||
assert (sf != 0);
|
||||
assert (df != sf);
|
||||
|
||||
const DataType sqrt2_2 = DataType (SQRT2 * 0.5);
|
||||
long coef_index = 0;
|
||||
do
|
||||
{
|
||||
df [coef_index] = sf [coef_index] + sf [coef_index + 4];
|
||||
df [coef_index + 4] = sf [coef_index] - sf [coef_index + 4];
|
||||
df [coef_index + 2] = sf [coef_index + 2] * 2;
|
||||
df [coef_index + 6] = sf [coef_index + 6] * 2;
|
||||
|
||||
df [coef_index + 1] = sf [coef_index + 1] + sf [coef_index + 3];
|
||||
df [coef_index + 3] = sf [coef_index + 5] - sf [coef_index + 7];
|
||||
|
||||
const DataType vr = sf [coef_index + 1] - sf [coef_index + 3];
|
||||
const DataType vi = sf [coef_index + 5] + sf [coef_index + 7];
|
||||
|
||||
df [coef_index + 5] = (vr + vi) * sqrt2_2;
|
||||
df [coef_index + 7] = (vi - vr) * sqrt2_2;
|
||||
|
||||
coef_index += 8;
|
||||
}
|
||||
while (coef_index < _length);
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <class DT>
|
||||
void FFTReal <DT>::compute_inverse_pass_1_2 (DataType x [], const DataType sf []) const
|
||||
{
|
||||
assert (x != 0);
|
||||
assert (sf != 0);
|
||||
assert (x != sf);
|
||||
|
||||
const long * bit_rev_lut_ptr = get_br_ptr ();
|
||||
const DataType * sf2 = sf;
|
||||
long coef_index = 0;
|
||||
do
|
||||
{
|
||||
{
|
||||
const DataType b_0 = sf2 [0] + sf2 [2];
|
||||
const DataType b_2 = sf2 [0] - sf2 [2];
|
||||
const DataType b_1 = sf2 [1] * 2;
|
||||
const DataType b_3 = sf2 [3] * 2;
|
||||
|
||||
x [bit_rev_lut_ptr [0]] = b_0 + b_1;
|
||||
x [bit_rev_lut_ptr [1]] = b_0 - b_1;
|
||||
x [bit_rev_lut_ptr [2]] = b_2 + b_3;
|
||||
x [bit_rev_lut_ptr [3]] = b_2 - b_3;
|
||||
}
|
||||
{
|
||||
const DataType b_0 = sf2 [4] + sf2 [6];
|
||||
const DataType b_2 = sf2 [4] - sf2 [6];
|
||||
const DataType b_1 = sf2 [5] * 2;
|
||||
const DataType b_3 = sf2 [7] * 2;
|
||||
|
||||
x [bit_rev_lut_ptr [4]] = b_0 + b_1;
|
||||
x [bit_rev_lut_ptr [5]] = b_0 - b_1;
|
||||
x [bit_rev_lut_ptr [6]] = b_2 + b_3;
|
||||
x [bit_rev_lut_ptr [7]] = b_2 - b_3;
|
||||
}
|
||||
|
||||
sf2 += 8;
|
||||
coef_index += 8;
|
||||
bit_rev_lut_ptr += 8;
|
||||
}
|
||||
while (coef_index < _length);
|
||||
}
|
||||
|
||||
|
||||
|
||||
#endif // FFTReal_CODEHEADER_INCLUDED
|
||||
|
||||
#undef FFTReal_CURRENT_CODEHEADER
|
||||
|
||||
|
||||
|
||||
/*\\\ EOF \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/
|
||||
Reference in New Issue
Block a user