Improved traffic system

This commit is contained in:
Segey Lapin
2021-11-07 06:24:30 +03:00
parent aae5d0a8c3
commit ee1250d5d2
5 changed files with 53 additions and 287 deletions

View File

@@ -50,104 +50,6 @@ onready var palace_map_data = {
}
#class radial_grid:
# var radial_points = []
# var max_r = 0.0
# var grid = []
# var width: int = 0
# var height: int = 0
# var nodes = []
# func build(poly, center):
# var height = center.y
# max_r = 0.0
# for p in range(poly.size()):
# var ep1 = poly[p]
# ep1.y = height
# var ep2 = poly[(p + 1) % poly.size()]
# ep2.y = height
# var d = (ep2 - ep1).normalized()
# radial_points.push_back(ep1)
# var dst = ep1.distance_to(ep2)
# while dst > 32:
# ep1 += d * 32
# radial_points.push_back(ep1)
# dst -= 32
# for p in range(radial_points.size()):
# var ep = radial_points[p]
# var dst = ep.distance_to(center)
# if max_r < dst:
# max_r = dst
# width = radial_points.size()
# height = int(max_r / 32)
# grid.resize(width * height)
# for p in range(width):
# var start = radial_points[p]
# var end = center
# var step = (end - start).normalized() * (end - start).length() / float(height + 1)
# var val = start
# for q in range(height):
# grid[p * height + q] = {"position": val, "node": null}
# func get_grid_node(x, y):
# return grid[x * height + y].node
# func set_grid_node(x, y, node):
# if !node in nodes:
# nodes.push_back(node)
# grid[x * height + y].node = node
# func place_grid(aabb: AABB, node) -> void:
# for u in range(width):
# for v in range(height):
# if aabb.has_point(grid[u * height + v].position):
# set_grid_node(u, v, node)
# func get_pos(x, y):
# return grid[x * height + y].position
# onready var grid = radial_grid.new()
#func debug_poly(poly):
# for k in range(poly.size()):
# var p1 = poly[k]
# var p2 = poly[(k + 1) % poly.size()]
# var l = p1.distance_to(p2)
# var d = (p2 - p1).normalized()
# var pt = p1
# while l > 0.0:
# for e in range(0, 30, 2):
# var mi = MeshInstance.new()
# mi.mesh = CubeMesh.new()
# get_tree().root.add_child(mi)
# mi.global_transform.origin = pt + Vector3(0, e, 0)
# pt += d * 5.0
# l -= 5.0
#
#func calc_border(poly, offt):
# var height = RoadsData.get_site_avg_height(0)
# var border = []
# border.resize(poly.size())
# for k in range(poly.size()):
# var i = k - 1
# if i < 0:
# i += poly.size()
# var p1 = poly[i]
# var p2 = poly[k]
# var p3 = poly[(k + 1) % poly.size()]
# var p1x = Vector2(p1.x, p1.z)
# var p2x = Vector2(p2.x, p2.z)
# var p3x = Vector2(p2.x, p2.z)
# var p4x = Vector2(p3.x, p3.z)
# var n1 = (p2x - p1x).tangent().normalized()
# var n2 = (p4x - p3x).tangent().normalized()
# p1x -= n1 * offt
# p2x -= n1 * offt
# p3x -= n2 * offt
# p4x -= n2 * offt
#
# var xp = Geometry.segment_intersects_segment_2d(p1x, p2x, p3x, p4x)
# if !xp:
# xp = p2x.linear_interpolate(p3x, 0.5) - (n1 + n2).normalized() * offt
# var tp = Vector3(xp.x, height, xp.y)
# border[k] = tp
# return border
#
var traffic_rnd: RandomNumberGenerator
var traffic_astar: AStar
var towns = 0
@@ -168,7 +70,6 @@ func setup_town(site):
center += p
center /= poly.size()
center.y = height
# grid.build(border2, center)
var radial_points = RoadsData.get_site_radial_points(site, 32.0, 64.0)
var max_r = 0.0
for p in range(radial_points.size()):
@@ -179,6 +80,7 @@ func setup_town(site):
for p in range(radial_points.size()):
var ep = radial_points[p]
var d = (center - ep).normalized()
assert(d.length_squared() > 0)
var dst = ep.distance_to(center)
print(dst)
if dst < 64.0 + 12 + 8 + 4:
@@ -250,6 +152,7 @@ func setup_first_town():
for p in range(radial_points.size()):
var ep = radial_points[p]
var d = (center - ep).normalized()
assert(d.length_squared() > 0)
var dst = ep.distance_to(center)
print(dst)
if dst < 64.0 + 12 + 8 + 4:
@@ -285,12 +188,13 @@ func setup_traffic(site):
var n = (p2 - p1).cross(Vector3.UP).normalized()
var t = (p2 - p1).normalized()
var l = p1.distance_to(p2)
assert(l > 0 && t.length_squared() > 0)
var xpos = p1 + t * 8.0
var xe = 128.0
if l < xe + 16.0:
xpos = p1.linear_interpolate(p2, 0.5)
var x = xpos + n * 1.5 + Vector3.UP * 0.5
var xform = Transform(Basis(), x).looking_at(x + t * 3.0, Vector3.UP)
var x = xpos
var xform = Transform(Basis(), x).looking_at(x - t * 3.0, Vector3.UP)
var c = Spatial.new()
lp.add_child(c)
c.transform = xform
@@ -299,8 +203,8 @@ func setup_traffic(site):
c.add_to_group("traffic_spawn")
else:
while l > xe + 16.0:
var x = xpos + n * 4.0 + Vector3.UP * 0.5
var xform = Transform(Basis(), x).looking_at(x + t * 3.0, Vector3.UP)
var x = xpos
var xform = Transform(Basis(), x).looking_at(x - t * 3.0, Vector3.UP)
var c = Spatial.new()
lp.add_child(c)
c.transform = xform
@@ -333,9 +237,12 @@ func _ready():
}
for k in parts.keys():
Spawner.add_scene(k, parts[k])
Traffic.set_min_spawn_distance(50.0)
# Traffic.set_deny_physics()
Traffic.set_physics_distance(Vector3(30, -10, 40))
# Traffic.set_debug(true)
Traffic.add_traffic_vehicle(car)
# Called every frame. 'delta' is the elapsed time since the previous frame.
var delay = 3.0
var state = 0
func _process(delta):
@@ -359,19 +266,6 @@ func _process(delta):
func stream_obj(obj: String, xform: Transform):
Spawner.place_scene(obj, xform)
func switch_to_distant_vehicle(n):
var sp = PhysicsServer.body_get_space(n.get_rid())
var l = n.get_linear_velocity()
n.set_meta("velocity", l)
n.set_meta("space", sp)
PhysicsServer.body_set_space(n.get_rid(), RID())
func switch_to_close_vehicle(n):
var sp = n.get_meta("space")
PhysicsServer.body_set_space(n.get_rid(), sp)
n.remove_meta("space")
if n.has_meta("velocity"):
n.set_linear_velocity(n.get_meta("velocity"))
n.remove_meta("velocity")
func _physics_process(delta):
var cam = get_viewport().get_camera()
if !cam:
@@ -382,111 +276,45 @@ func _physics_process(delta):
for n in get_tree().get_nodes_in_group("traffic_vehicle"):
var p1 = cam.global_transform.origin
var p2 = n.global_transform.origin
var check_coords = cam.global_transform.xform_inv(p2)
# p2 has both vertical and lane offset, correct these and write to path_pos
var path_pos = Traffic.get_path_position(n)
var check_coords = cam.global_transform.xform_inv(path_pos)
var steer = 0.0
var x_target = Vector3()
var next_target = Vector3()
var orientation = n.global_transform
orientation.origin = Vector3()
var direction = orientation.xform(Vector3(0, 0, -1))
var good_path = false
var engine_force = n.engine_force
if !n.has_meta("curve"):
create_path(n, p2, direction * 10.0)
continue
if n.has_meta("curve"):
var curve = n.get_meta("curve")
if curve.get_point_count() > 0:
var plength = n.get_meta("curve_length")
var offt = curve.get_closest_offset(p2)
var offt_ext = 8.0
if n.has_meta("velocity"):
offt_ext = n.get_meta("velocity").length()
offt = clamp(offt + offt_ext, 0, plength)
var p0 = curve.interpolate_baked(offt, false)
next_target = p0
if false: # p0.distance_squared_to(p2) > 16.0:
n.remove_meta("curve")
steer = 0.0
x_target = Vector3()
next_target = p2 + direction * 4.0
else:
var xt0 = n.global_transform.xform_inv(p0)
x_target = xt0
if xt0.z < 0.0:
steer = xt0.x
if steer == 0.0:
steer = -1
else:
steer = x_target.x
steer = sign(steer)
# if abs(steer) < 0.005:
# steer = 0.0
n.set_meta("x_target", x_target)
print("position: ", p2, " direction: ", direction, " next_target: ", next_target, " x_target: ", x_target, " steer: ", steer, " ! ", (next_target - p2).normalized())
else:
assert(false)
# if check_coords.z > 160 || check_coords.z < -120 || abs(check_coords.x) > 100:
# n.queue_free()
if false: # check_coords.z > 40.0 || check_coords.z < -25.0 || abs(check_coords.x) > 20.0:
if !n.has_meta("space"):
switch_to_distant_vehicle(n)
var xvel = (next_target - p2).normalized() * 6.0
n.set_meta("velocity", xvel)
var pos = n.global_transform.origin
var vel = (next_target - p2).normalized() * 6.0
if n.has_meta("velocity"):
vel = n.get_meta("velocity")
var speed = vel.length()
var stf = (next_target - pos).normalized() * speed
# stf.y = vel.y
vel = vel.linear_interpolate(stf, delta)
var target_pos = pos + vel
# vel.y = vel.y * delta
var newpos = pos.linear_interpolate(target_pos, delta)
n.set_meta("velocity", vel)
# why?
var xform = Transform(Basis(), newpos).looking_at(newpos - vel * 4.0, Vector3.UP)
n.global_transform = xform
else:
if n.has_meta("space"):
switch_to_close_vehicle(n)
# next_target has corrected vertical position (up from path)
steer = Traffic.get_steer(n, true) * 0.6
if !n.has_meta("space"):
var v = n.get_linear_velocity()
n.set_meta("velocity", v)
var l = v.length()
# if abs(steer) > 3.0 || !good_path:
# # vehicle totally lost
# n.brake = 60000
# n.engine_force = 0
# elif abs(steer) > 2.0:
# # vehicle lost
# n.engine_force = 0
if next_target.length_squared() == 0:
engine_force = 0.0
steer = 0.0
print("physics: velocity: ", v, " velocity norm: ", v.normalized())
if true:
if abs(steer) > 3.0:
engine_force *= 0.9
engine_force = clamp(engine_force, 2500.0, max(2500, engine_force))
else:
if abs(steer) > 3.0:
engine_force *= 0.9
engine_force = clamp(engine_force, 2500.0, max(2500, engine_force))
else:
if abs(steer) > 4.0 && l > 5.0:
engine_force = engine_force * 0.9996
if l > 7.0:
engine_force = engine_force * 0.9996
elif l < 1.1:
engine_force = clamp(engine_force * 1.004, 6000, 8000)
elif l < 2.5:
engine_force = clamp(engine_force * 1.002, 5000, 7000)
elif l < 5.0:
engine_force = clamp(engine_force * 1.001, 4000, 6000)
elif l < 6.0:
engine_force = clamp(engine_force * 1.001, 3000, 5000)
# engine_force = 0.0
engine_force = clamp(engine_force, 0, 8500)
print("engine_force: ", engine_force)
if abs(steer) > 4.0 && l > 5.0:
engine_force = engine_force * 0.9996
if l > 7.0:
engine_force = engine_force * 0.9996
elif l < 1.1:
engine_force = clamp(engine_force * 1.004, 6000, 8000)
elif l < 2.5:
engine_force = clamp(engine_force * 1.002, 5000, 7000)
elif l < 5.0:
engine_force = clamp(engine_force * 1.001, 4000, 6000)
elif l < 6.0:
engine_force = clamp(engine_force * 1.001, 3000, 5000)
engine_force = clamp(engine_force, 0, 3500)
# print("engine_force: ", engine_force)
n.engine_force = engine_force
n.brake = 0
# n.steering = clamp(steer, -1, 1)
var base_steering = n.steering
var main_steering = base_steering * 0.95 + steer * 0.05
n.steering = clamp(main_steering, -1, 1)
@@ -522,81 +350,6 @@ func _physics_process(delta):
p.add_child(c)
c.global_transform = n.global_transform
n.queue_free()
# elif n.is_in_group("traffic_spawn"):
# var p1 = cam.global_transform.origin
# var p2 = n.global_transform.origin
# if !n.has_meta("cooldown") && p1.distance_squared_to(p2) < 10000.0:
# var c = car.instance()
# c.add_to_group("traffic_vehicle")
# var p = get_tree().root
# p.add_child(c)
# c.global_transform = n.global_transform
# c.parked = false
# c.mode = c.MODE_RIGID
# c.engine_force = 2500
# c.steering = 0
# var xf = c.global_transform
# xf.origin = Vector3()
# var vel = xf.xform(Vector3(0, 0, -10))
# c.set_linear_velocity(vel)
# var sp = PhysicsServer.body_get_space(c.get_rid())
# c.set_meta("space", sp)
# PhysicsServer.body_set_space(c.get_rid(), RID())
# n.set_meta("cooldown", 2.0 + randi() % 8)
# # create_path(c, p2, vel)
# elif n.has_meta("cooldown"):
# var cd = n.get_meta("cooldown")
# cd -= delta
# if cd < 0:
# n.remove_meta("cooldown")
func get_curve_closest(curve, p2):
var test_offt = curve.get_closest_offset(p2)
var testp = curve.interpolate_baked(test_offt, false)
return testp
func test_curve(curve, p2):
var testp = get_curve_closest(curve, p2)
return testp.distance_squared_to(p2) < 16.0
func create_path(c, p2, vel):
c.set_meta("velocity", vel)
print("create_path: velocity: ", vel)
var rangle = traffic_rnd.randf() * PI * 2.0
var randa = 500.0 + traffic_rnd.randf() * 500.0
var xt = cos(rangle) * randa
var yt = cos(rangle) * randa
var rv = Vector3(xt, 0, yt)
var target = RoadsData.get_closest_point(p2 + rv, false)
var cur = RoadsData.get_closest_point(p2, false)
while cur == target:
rangle = traffic_rnd.randf() * PI * 2.0
randa = 500.0 + traffic_rnd.randf() * 500.0
xt = cos(rangle) * randa
yt = sin(rangle) * randa
rv = Vector3(xt, 0, yt)
target = RoadsData.get_closest_point(p2 + rv, false)
c.set_meta("target", target)
var path = RoadsData.get_point_path(cur, target);
assert(cur != target)
assert(path.size() > 0)
var curve = Curve3D.new()
for e in range(path.size() - 1):
var pt1 = path[e]
var pt2 = path[e + 1]
var nt = (pt2 - pt1).cross(Vector3.UP).normalized()
var d = (pt2 - pt1).normalized()
var l = pt1.distance_to(pt2)
while l > 16.0:
pt1 += d * 8.0
curve.add_point(pt1 + nt * 3.0 + Vector3.UP * 0.5)
l -= 8.0
if (!test_curve(curve, p2)):
var testp = get_curve_closest(curve, p2)
var e = p2 + (testp - p2).normalized() * 2.0
var nt = (testp - p2).cross(Vector3.UP).normalized()
curve.add_point(e + nt * 3.0 + Vector3.UP * 0.5, Vector3(), Vector3(), 0)
assert(test_curve(curve, p2))
c.set_meta("curve", curve)
c.set_meta("curve_length", curve.get_baked_length())
# buildings

View File

@@ -8,6 +8,16 @@
config_version=4
_global_script_classes=[ {
"base": "VoxelGeneratorScript",
"class": "TerrainData",
"language": "GDScript",
"path": "res://generator.gd"
} ]
_global_script_class_icons={
"TerrainData": ""
}
[application]
run/main_scene="res://world.tscn"

View File

@@ -252,3 +252,5 @@ func is_upright():
# add_central_force(Vector3(0, -linear_velocity.y * delta * mass, 0))
# var l = linear_velocity.length() * delta
# add_central_force(Vector3(0, -l * 0.5 * mass, 0))
func set_lod(lod: int):
pass

View File

@@ -19,8 +19,9 @@ func _process(delta):
var xt = $VehicleBody.global_transform.affine_inverse()
var loc = xt.xform(tgt)
$VehicleBody.steering = clamp(loc.x, -1, 1)
print(loc.x, " ", loc.z)
print(loc.x, " ", loc.z, $VehicleBody.linear_velocity)
$Camera.look_at($VehicleBody.global_transform.origin, Vector3.UP)
print($VehicleBody.linear_velocity)
match state:
0:
$VehicleBody.engine_force = 2000

View File

@@ -52,14 +52,14 @@ transform = Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, 2.07902, 0, -0.0847001 )
transform = Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, -3.18049, 0, -0.0847001 )
[node name="target" type="Spatial" parent="."]
transform = Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, -3.18049, 0, 3.45624 )
transform = Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, 0.188565, 0, 4.49007 )
[node name="MeshInstance" type="MeshInstance" parent="target"]
mesh = SubResource( 3 )
material/0 = null
[node name="VehicleBody" type="VehicleBody" parent="."]
transform = Transform( -0.000366807, 0, -1, 0, 1, 0, 1, 0, -0.000366807, 0, 1.45468, 0 )
transform = Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1.45468, 0 )
mass = 2000.0
[node name="MeshInstance" type="MeshInstance" parent="VehicleBody"]